Norfolk CSO Sediment Remediation Project Five-Year Monitoring Program

Annual Monitoring Report - Year Two, April 2001

Elliott Bay/Duwamish Restoration Program

Prepared for the Elliott Bay/Duwamish Restoration Program Panel by the King County Department of Natural Resources

Panel Publication 31

Norfolk CSO Sediment Remediation Project Five-Year Monitoring Program

Annual Monitoring Report - Year Two, April 2001

Elliott Bay/Duwamish Restoration Program

Prepared for the
Elliott Bay/Duwamish Restoration Program Panel
by
Scott Mickelson
King County Department of Natural Resources

Panel Publication 31

Elliott Bay/Duwamish Restoration Program
NOAA Damage Assessment and Restoration Center Northwest
7600 Sand Point Way NE
Seattle, WA 98115-0070

(206) 526-4338 (FAX) (206) 526-4321

November 2001

Individuals and organizations needing further information about the Elliott Bay/Duwamish Restoration Program should contact the Administrative Director at the following address and telephone number:

Dr. Robert C. Clark, Jr., Administrative Director
Elliott Bay/Duwamish Restoration Program
NOAA Damage Assessment and Restoration Center Northwest
7600 Sand Point Way NE
Seattle, WA 98115–0070
(206) 526-4338 FAX: (206) 526-4321

The Panel of Managers holds regularly scheduled meetings that are open to the public. Technical Working Group and committee meetings are scheduled on an as-needed basis, and are also open to the public. Meetings are generally held at the National Oceanic and Atmospheric Administration, National Marine Fisheries Service - Regional Directorate Conference Room, Building 1, 7600 Sand Point Way NE, Seattle. The Panel recommends that you contact the Administrative Director at the above phone number to confirm meeting schedules and locations. The panel also holds periodic special evening and weekend public information meetings and workshops.

General Schedule for Panel and Committee Meeting Dates

Panel: quarterly, first Thursday of January, April, July, October, 9:30 A.M. - 12:30 P.M. Habitat Development Technical Working Group: third Thursday of every month, 9:30 A.M. - 12:30 P.M.

Sediment Remediation technical Working Group: scheduled as needed.

Public Participation Committee: scheduled as needed.

Budget Committee: scheduled as needed.

Environmental Review of Specific Projects

Formal hearings and comment periods on appropriate environmental documents for proposed sediment remediation and habitat development projects will be observed. Please contact the Administrative Director for more information.

This information is available in accessible formats on request at (206) 296-0600 (voice) and 1-800-833-6388 (TTY/TDD users only).

TABLE OF CONTENTS

1 Introduction		1
1.1 Project Background		1
1.2 Site Description		
2 Sample Collection		2 3 3
2.1 Sample Locations and Station Positionin	y	3
2.2 Sample Collection and Handling		4
3 Sample Analysis		5
3.1 Conventionals		5
3.2 Metals		5 5 5 6
3.3 Organics		5
3.4 Quality Assurance/Quality Control (QA/	QC)	6
4 Analytical Results		7
4.1 Particle Size Distribution (PSD)		7
4.2 Conventionals		7
4.3 Metals		7
4.4 Organics		8
4.4.1 Ionic Organic Compounds		8
4.4.2 Non-Ionic Organic Compounds Cor	npared to SQS/CSL Criteria	8
4.4.2.1 Low-Molecular Weight Polynu	•	8
4.4.2.2 High-Molecular Weight Polynu	clear Aromatic Hydrocarbons (HPAHs)	9
4.4.2.3 Chlorobenzenes	•	9
4.4.2.4 Phthalates		9
4.4.2.5 Miscellaneous Compounds		10
4.4.2.6 PCBs		10
4.4.3 Non-Ionic Organic Compounds Con	npared to LAET/2LAET Criteria	10
5 Future Monitoring		11
6 Summary and Conclusions		12
7 References		16
List of Figures	List of Appendices	
Figure 1 - Site Vicinity Map	Appendix A - Complete Analytical Re	sults
Figure 2 - Site Map with Sample Locations	Appendix B - Quality Assurance Review	ew
List of Tables		
Table 1 - Sample Location Coordinates		
Table 2 - Particle Size Distribution		
Table 3 - Sediment Conventionals		
Table 4 - Sediment Metal Concentrations		
Table 5 - Sediment Ionic Organic Concentration	S	
Table 6 - Sediment Non-Ionic Organic Concentr	ations (Organic Carbon Normalized)	
Table 7 - Sediment Non-Ionic Organic Concentr	` • • • • • • • • • • • • • • • • • • •	
Table 8 - Comparison of Sediment Constituents	(0 - 10 cm Depth Stratum)	
Table 0 - Comparison of Sediment Constituents	(0 - 2 cm Denth Stratum)	

1 Introduction

This report presents the results of the fourth sampling event of a five-year monitoring program at the Norfolk combined sewer overflow (CSO) sediment remediation site. The purpose of the five-year program is to monitor sediment placed as backfill material at the site for potential recontamination from CSO and other discharges. The fourth monitoring event occurred in April 2001, two years after completion of remedial activities. This monitoring event was intended to collect data on the chemical characteristics of the backfill material after the second year and compare those data to baseline chemical conditions. Included in this report are a project background, descriptions of sampling and analytical methodologies, analytical results, and a quality assurance review of the analytical data.

1.1 Project Background

Sediment remediation at the Norfolk CSO site was undertaken to partially fulfill sediment remediation requirements of a 1991 Consent Decree, which defined the terms of a natural resources damage agreement between King County (along with the City of Seattle) and federal, state, and tribal natural resources trustees. The Norfolk CSO site was chosen by the Elliott Bay/Duwamish Restoration Program (EBDRP) Panel as one of four sites prioritized for potential sediment remediation.

A site characterization and cleanup study was performed in 1994 and 1995, and the cleanup study report was issued in 1996 (EBDRP, 1996). Chemicals of concern at the site included mercury, 1,4-dichlorobenzene, bis(2-ethylhexyl) phthalate and polychlorinated biphenyls (PCBs), all present at concentrations exceeding State of Washington Sediment Management Standards (SMS) sediment chemical criteria values that define the cleanup screening levels. PCB "hot spot" concentrations at the site also exceeded Toxic Substances Control Act (TSCA) limits for hazardous waste disposal.

Site remediation began in early February 1999 and was completed by late March 1999. Remedial activities consisted of dredging and disposal of contaminated sediment and backfilling the dredged area to original grade with clean sediment from the Duwamish River Turning Basin. Contaminated sediments were removed from the site by mechanical dredge and dewatered on shore in a containment area first arranged to segregate batches about 50 cubic yards (cy) in size and later reconfigured to handle larger batches.

Sediment samples were collected daily from each 50-cy batch and analyzed for PCB concentrations to determine the appropriate disposal destination. Sediments with a PCB concentration greater than 45 parts per million (ppm) were transported to a Subtitle C landfill in Arlington, Oregon for disposal. Sediments with a PCB concentration less than 45 ppm were transported to a Subtitle D landfill in Bremerton, Washington for disposal. A total of 5,190 cy of sediment was removed during the remediation, of which approximately 1,900 cy were transported to the Subtitle C landfill as hazardous waste. Sediment was generally removed to a depth of three feet, however, remediation in the PCB hot spot areas required removal of sediment up to a depth of nine feet. Confirmational testing subsequent to dredging activities indicated that, in some of the deepest-dredged areas, sediments were left

in place that contained PCB concentrations greater than SMS chemical criteria. Discussions with project oversight personnel from the EBDRP Panel and State of Washington Department of Ecology (Ecology) determined that, at a depth of nine feet below original grade, these PCB-contaminated sediments could be left in place.

Clean backfill sediment was obtained from the Duwamish River Turning Basin during normal, maintenance dredging operations by the Army Corps of Engineers (ACOE). Data collected by the Corps prior to maintenance dredging indicated that this material was suitable for use as backfill material (ACOE unpublished data, 1998). A sample was also collected from the Turning Basin sediment after it was placed on a barge and just prior to backfilling activities. Analytical results from this sample confirmed the suitability of the sediment as backfill material (King County unpublished data, 1999). No organic chemicals were detected in the sample and metals were detected at levels indicative of natural, area-wide crustal sediment concentrations. Approximately 6,700 cy of Turning Basin sediment was used to backfill the dredged area at the Norfolk CSO sediment remediation site. A site closure report was issued in August 1999 (EBDRP, 1999).

The site hydraulic permit, issued by the Washington State Department of Fish and Wildlife prior to remediation, requires that the site be monitored for a period of five years following remedial activities to evaluate possible recontamination of the backfill sediment as a result of continuing CSO or storm water discharges. To comply with this permit, a five-year monitoring plan was prepared which includes sampling and analysis of surficial sediments from four stations in the backfilled area. Analytical data will allow King County to evaluate the chemical characteristics of the sediment and assess possible recontamination over time. Monitoring activities will be performed in accordance with a sampling and analysis plan addendum prepared by King County (King County, 1999).

1.2 Site Description

The Norfolk CSO sediment remediation site is located in the Duwamish River, above the Turning Basin at approximately river kilometer (km) 10 in the City of Tukwila (Figure 1). The site is located upstream of the river reach maintained for commercial navigation and, as such, has maintained its natural channel as well as some riparian habitat (EBDRP, 1996). The shoreline is characterized by a steeply sloping, erosional bank maintained with large concrete riprap. The bank joins a gently sloping, intertidal mud shoreline that is completely exposed during extreme low tides.

The Norfolk CSO outfall originates at King County's Norfolk Street Regulator Station near South 102nd Street and East Marginal Way in Tukwila (EBDRP, 1996). The outfall structure has a flap gate over the 84-inch discharge pipe and a concrete splash plate that is exposed during normal low tides. The remediation site is located adjacent to the outfall structure and is characterized by exposed, intertidal mud habitat as well as subtidal riverbed. The intertidal zone has been channelized, both by the discharge of the Norfolk CSO and by a storm drain outfall that drains a Boeing Company parking lot adjacent to the CSO outfall.

2 SAMPLE COLLECTION

This section describes sampling activities conducted in April 2001. All sampling activities were conducted following guidance suggested in the Puget Sound Protocols (PSEP, 1996a and 1998).

2.1 Sample Locations and Station Positioning

Sampling locations were selected and coordinates determined prior to field activities. Final sampling locations were selected prior to the October 1999 six-month monitoring event (King County, 2000) and were designed to assess potential recontamination at the site and evaluate the chemical characteristics of the backfill material at the following locations:

- within the Norfolk CSO channel, prior to its confluence with the Boeing storm drain channel (NFK501);
- on the delta after the confluence of the Norfolk CSO and Boeing storm drain channels (NFK502);
- within the Boeing storm drain channel prior to its confluence with the Norfolk CSO channel (NFK503); and
- upriver of both the Norfolk CSO and Boeing storm drain channels (NFK504).

Sample station locations were selected to monitor sediment quality in those areas with the greatest potential for recontamination; two stations in the Norfolk CSO channel and one station in the Boeing storm drain channel. The upriver station was selected to provide background or reference data.

The prescribed station location coordinates are presented in Table 1 and sample locations are shown in Figure 2.

Sediment grab samples were collected from the King County research vessel *Chinook*, which is equipped with a differential global positioning system (DGPS). Coordinates, presented in Table 1, were recorded using DGPS for each of the individual grabs as the sampler contacted the river bottom. The DGPS is a satellite-based navigation system that operates using a receiver to calculate ground position by triangulating scrambled data transmitted by a constellation of satellites operated by the Department of Defense (DOD). The ship-board "differential" receiver receives both the scrambled DOD signal and "corrected" signals originating from base stations operated by various agencies including the Coast Guard and King County. System software applies the differential correction and calculates a precise, real-time navigational position.

Two composite sediment samples were obtained from each station. One sample was collected from the 0 to 2 centimeter (cm) depth stratum and the other sample was collected from the 0 to 10 cm depth stratum. Both samples at each station were composited from three separate deployments of the grab sampler. Coordinates for each grab deployment are included in Table 1.

2.2 Sample Collection and Handling

Eight estuarine sediment samples were collected April 24, 2001 from the Norfolk CSO sediment remediation site. Samples were collected from both the top 2 cm and top 10 cm of sediment at each station using a stainless steel, modified, 0.1 m² Van Veen grab sampler deployed from the *Chinook* via hydrowire. Both samples at each station were composited from three separate deployments of the grab sampler. Water depth at the four sample stations ranged between 1 and 3 meter (~ 3 to 6 feet) on an ebbing to slack tide of between 2 and -0.3 feet (referenced to mean lower low water). Between 11 and 16 cm of sediment was recovered in each grab, allowing collection of a sample aliquot from the top 10 cm without sampling sediment that had touched the sides or bottom of the grab sampler.

Samples were comprised of sediment aliquots collected from three individual grabs at each station with an equal amount of material collected from each grab. The sediment aliquot for the 0 to 2 cm depth stratum was collected from one side of each grab using a 200 cm² stainless-steel "cookie cutter." The sediment aliquot for the 0 to 10 cm depth stratum was collected from the other side of each grab using a stainless-steel spoon. Each of the aliquots were placed into separate stainless-steel bowls, covered with foil, and placed into an ice-filled cooler between grab deployments. After collecting aliquots from three grabs, the sediment sample was thoroughly homogenized and sample aliquots split out into pre-labeled containers. Sample containers were supplied by the King County Environmental Laboratory and were pre-cleaned according to analytical specifications.

Two sets of sample compositing equipment were dedicated to each station, precluding the need for decontamination of the field gear. The Van Veen grab sampler was decontaminated between stations by scrubbing with a brush and river water followed by a thorough *in situ* rinsing.

Samples were stored in ice-filled coolers from the time of collection until delivery to the King County Environmental Laboratory. Samples were delivered under chain-of-custody and were maintained as such throughout the analytical process. Samples were stored frozen (-18°C) by the laboratory until analysis with the exception of samples for particle size distribution (PSD) analysis. PSD samples were stored refrigerated at approximately 4°C. All analyses were conducted by the King County Environmental Laboratory with the exception of PSD, which was analyzed at Rosa Environmental and Geotechnical Laboratory, a subcontracted laboratory accredited by Ecology.

3 SAMPLE ANALYSIS

The eight estuarine sediment samples were submitted for analysis of conventional, metal, and organic parameters. This section describes the type of analyses performed, as well as analytical methodologies used and the associated quality assurance/quality control (QA/QC) procedures followed. Analyses were selected to allow comparison of sediment data to the SMS sediment chemical criteria found in Tables 1 and 3 of Chapter 173-204 WAC (Ecology, 1995).

3.1 Conventionals

Conventional analyses included percent solids, total organic carbon (TOC), and PSD. Percent solids and TOC analyses were performed to provide data necessary to normalize sediment data to dry weight and organic carbon, respectively. TOC analysis also allows evaluation of possible organic enrichment at the site over time. Percent solids analysis was performed following SM 2540-G, gravimetric determination and TOC analysis was performed following EPA Method 9060, high-temperature combustion with infrared spectroscopy. PSD analysis allows evaluation of the gross physical characteristics of the backfill material and any changes imparted by sedimentation. PSD analysis was performed according to method ASTM D422, a combination of sieve and hydrometer analyses.

3.2 Metals

Metal analyses included 12 priority pollutant metals, as well as the crustal metals aluminum, iron, and manganese (see Appendix A). SMS regulates eight of the metals included in this suite of analytes; arsenic, cadmium, chromium, copper, lead, mercury, silver, and zinc. Metal analysis allows assessment of potential recontamination at the site over time. With the exception of mercury, all metal analyses were performed following EPA Method 3050A/6010B; strong-acid digestion with inductively coupled plasma optical emission spectroscopy. Mercury was analyzed according to EPA Method 245.5, cold vapor atomic absorption spectroscopy.

3.3 Organics

Organic analyses included base/neutral/acid extractable semivolatile compounds (BNAs) and PCBs (see Appendix A). Organic analysis also allows assessment of potential recontamination to the site over time, especially by PCBs and phthalates. BNA analysis was performed following EPA Method 3550B/8270C (SW-846), gas chromatography with mass spectroscopy (GC/MS). PCBs were analyzed by EPA Method 3550B/8082 (SW-846), gas chromatography with electron capture detection (GC/ECD). This suite of analytes included all organic compounds regulated under SMS.

3.4 Quality Assurance/Quality Control (QA/QC)

All analyses were performed following guidance recommended under Puget Sound Protocols (PSEP 1986, 1996b, and 1996c) including associated QA/QC practices. Laboratory QA/QC practices produced data of sufficient quality to pass QA1 review. Analytical data were reviewed following QA1 guidelines (Ecology, 1989) and flagged with data qualifiers where appropriate. A comprehensive report of analytical data, including qualifier flags is included as Appendix A. The QA1 review narrative is included as Appendix B.

4 ANALYTICAL RESULTS

This section discusses analytical results for the eight estuarine sediment samples collected from the Norfolk CSO sediment remediation site and compares the data to sediment criteria specified under SMS (Ecology, 1995). Tables in this section summarize and compare the data to both Sediment Quality Standards (SQS) and Cleanup Screening Levels (CSL)

4.1 Particle Size Distribution (PSD)

PSD results are summarized in Table 2. PSD results indicate that there has been little overall change in the basic structure of the backfill material over the 0 to 10 cm depth stratum at stations NFK502 and NFK503. The samples collected from the 0 to 10 cm depth stratum at stations NFK502 and NFK503 were comprised of 90.7 and 97.0% sand, respectively. The samples collected from to 0 to 10 cm depth stratum at stations NFK501 and NFK504, however, showed increased fine materials over the samples between April 1999 and April 2001. Percent sand content for the 0 to 10 cm depth stratum samples collected from stations NFK501 and NFK 504 was 78.8 and 65.4%, respectively. Three of the four samples collected from the 0 to 2 cm depth stratum also contained higher percentages of fine material, perhaps indicating some recently deposited silts and clays. The sample collected from the 0 to 2 cm depth stratum at station NFK503 continued to be sandy, with a sand content of 95.9%.

4.2 Conventionals

Conventional analytical results are summarized in Table 3 and include percent solids, used to calculate dry-weight sediment concentrations of metal and organic data and TOC, used to normalize certain organic parameters to organic carbon content.

Percent solids results ranged from 52.7 to 74.7%. TOC concentrations in the 0 to 2 cm depth stratum samples ranged from 2,770 to 15,600 milligrams per kilogram (mg/Kg) dry weight, or ~ 0.3 to 1.6%. TOC concentrations in the 0 to 10 cm depth stratum samples ranged from 3,600 to 9,080 mg/Kg, or ~ 0.4 to 0.9%.

4.3 Metals

Sediment metal analytical results are summarized in Table 4. Metals data have been normalized to dry weight for comparison to SMS chemical criteria.

Arsenic, cadmium, and silver were not detected in any samples collected during this monitoring event. Reported concentrations of all other metals (Appendix A) were at levels indicative of natural, area-wide crustal concentrations (Dexter et al, 1981). Metal concentrations or method detection limit (MDL) values for those metals regulated under SMS were all below SQS chemical criteria. Comparison of metals data at both the 0 to 2 and 0 to 10 cm depth strata show very little change in metals concentrations over the first two years of the monitoring program.

4.4 Organics

Organic analytical results are summarized in Tables 5, 6, and 7. Data for ionic organic compounds have been normalized to dry weight for comparison to SMS sediment criteria and are presented in Table 5.

Data for non-ionic organic compounds have been normalized to organic carbon and are presented in Table 6 for comparison to the SQS and CSL. Normalization to organic carbon can produce biased results, however, when the organic carbon content of the sample is very low (Ecology, 1992). When the organic carbon content of a sample is near 0.1 or 0.2% (1,000 to 2,000 mg/Kg dry weight), even background concentrations of certain organic compounds can exceed the SQS or CSL.

For sediment with a TOC content less than 0.5% (5,000 mg/Kg dry weight), Ecology recommends comparing dry weight-normalized, non-ionic organic data to Puget Sound lowest apparent effects thresholds (LAET) and second lowest apparent lowest effects thresholds (2LAET) (EPA, 1988), which are considered to be equivalent to the SQS and CSL values, respectively. This comparison allows a more appropriate evaluation of sediment quality relative to organic compounds (Ecology, 1992). Table 7 presents this comparison.

4.4.1 Ionic Organic Compounds

Benzoic acid was detected in all eight samples at concentrations ranging from 67.6 to 299 micrograms per kilogram (μ g/Kg). These concentrations are below the SQS/CSL criterion of 650 μ g/Kg and are similar to concentrations detected during previous monitoring events. No other ionic organic chemicals were detected in any of the samples collected during this monitoring event.

4.4.2 Non-Ionic Organic Compounds Compared to SQS/CSL Criteria

Organic carbon values in samples collected during this monitoring event ranged from 0.3 to 1.6%. Samples with organic carbon content less than 0.5% include the sample collected from the 0 to 10 cm depth stratum at station NFK502 and both samples collected from station NFK503.

4.4.2.1 Low-Molecular Weight Polynuclear Aromatic Hydrocarbons (LPAHs)
Anthracene was detected in all four samples collected from the 0 to 2 cm depth stratum.
Organic carbon-normalized anthracene concentrations were all less than 1% of the SQS criterion of 220 mg/Kg organic carbon (OC). Phenanthrene was detected in samples collected from the 0 to 2 cm depth stratum at all four stations as well as three of four samples collected from the 0 to 10 cm depth stratum. Phenanthrene concentrations are all less than 10% of the SQS criterion of 100 mg/Kg organic carbon (OC). No other LPAH compounds were detected in samples collected during this monitoring event.

4.4.2.2 High-Molecular Weight Polynuclear Aromatic Hydrocarbons (HPAHs)

One or more HPAH compounds were detected in both samples collected from all four stations. Organic carbon-normalized HPAH concentrations were typically less than 10% of the SQS criteria. Concentrations of HPAH compounds have shown some variation over the four monitoring events although the concentrations detected have all been below SQS criteria. The station in the Norfolk CSO channel (NFK501) had the greatest number of HPAH compounds detected but the total HPAH value was still less than 10% of the associated SQS value.

4.4.2.3 Chlorobenzenes

Chlorobenzene compounds were not detected in any samples collected during this monitoring event. All chlorobenzene MDL values were lower than associated sediment chemical criteria, both organic carbon- and dry weight-normalized.

4.4.2.4 Phthalates

Bis(2-ethylhexyl) phthalate was detected in all eight samples collected during this monitoring event. Concentrations ranging from 24.9 to 42.7 mg/Kg OC were reported in samples collected from the three stations with an organic carbon content greater than 0.5%. These concentrations are all less than the SQS of 47 mg/Kg OC with the low value at 53% of the SQS and the high value at 91% of the SQS. Bis(2-ethylhexyl) phthalate was also detected in the method blank associated with this group of samples at a concentration of 14.5 μg/Kg dry weight (see Appendix B). Normalized to the range of organic carbon concentrations found in these samples, method blank concentrations of bis(2-ethylhexyl) phthalate would be 0.93 to 5.23 mg/Kg OC. Bis(2-ethylhexyl) phthalate concentrations in both samples collected from the Boeing storm drain channel (NFK503) were less than five times the method blank concentration and should be discounted as highly biased. Other bis(2-ethylhexyl) phthalate concentrations are legitimate as reported, however, they should be viewed with the possibility of some contribution to the overall concentration from laboratory contamination.

Di-N-butyl phthalate was detected in all eight samples collected during this monitoring event, however, this compound was also detected in the laboratory method blank. All sample concentrations were less than five times the method blank concentration and, as a result, should be disregarded.

Butyl benzyl phthalate was detected in both samples collected from the Norfolk CSO channel (NFK501), the combined channel delta (NFK502), and the upriver reference station (NFK504) at concentrations ranging from 2.24 to 6.63 mg/Kg OC. The concentrations detected in the samples collected from the 0 to 10 cm depth stratum at stations NFK501 and NFK502 (6.63 and 5.03 mg/Kg OC, respectively) exceeded the SQS for butyl benzyl phthalate of 4.9 mg/Kg OC. Both of these reported concentrations, however, are well below the butyl benzyl phthalate CSL of 64 mg/Kg OC. Butyl benzyl phthalate was not detected in the sample collected from the Boeing storm drain channel.

4.4.2.5 Miscellaneous Compounds

Dibenzofuran, hexachlorobutadiene, and N-nitrosodiphenylamine were not detected in any samples collected during this monitoring event. MDL values for these compounds were all below associated SQS criteria.

4.4.2.6 PCBs

PCBs (as total Aroclors®) were detected in all eight samples collected during this monitoring event. The highest reported PCB concentrations were detected in samples collected from the Boeing storm drain channel (NFK503). The organic carbon content of both samples collected from station NFK503 is less than 0.5%, therefore, comparison to PCB chemical criteria should be made to dry weight-normalized LAET values. The PCB concentrations of 1,880 µg/Kg DW (0 to 2 cm sample) and 1,330 µg/Kg DW (0 to 10 cm sample) detected in the Boeing storm drain channel both exceed the 2LAET criterion value of 1,000 µg/Kg DW.

The organic carbon content at the other three stations was greater than 0.5%, therefore, comparison to PCB chemical criteria should be made to organic carbon-normalized SQS/CSL values. The PCB concentrations of 24.8 mg/Kg OC (0 to 2 cm sample) and 18.9 mg/Kg OC (0 to 10 cm sample) detected at the combined channel delta station (NFK502) both exceed the SQS criterion value of 12 mg/Kg OC. PCB concentrations detected in samples collected from the Norfolk CSO channel (NFK501) and the upriver reference station (NFK504) were all less than the SQS criterion value.

4.4.3 Non-Ionic Organic Compounds Compared to LAET/2LAET Criteria

The dry weight-normalized MDL range of 27 to 31 μ g/Kg for N-nitrosodiphenylamine exceeded the LAET criterion of 28 μ g/Kg for six of eight samples collected during this monitoring event. N-nitrosodiphenylamine was not detected in any of the samples.

All dry weight-normalized, detected concentrations of LPAHs, HPAHs, and phthalates were below LAET criteria.

5 FUTURE MONITORING

Sampling and analysis completed in April 2001 was performed to assess surface sediment conditions of the backfill material two years after placement at the Norfolk remediation site. Future monitoring events will occur on an annual basis, with the next monitoring event scheduled for April 2002. Station locations will remain the same unless the CSO and storm drain discharge channels change significantly over the course of the monitoring period.

All subsequent monitoring events will include collection of two discrete samples from each of the four established locations. One sample will be collected from the top 2 cm of sediment and analyzed to evaluate the chemical characteristics of recently deposited material. Another sample will be collected from the top 10 cm to evaluate the chemical characteristics of the sediment over the entire biologically active zone. The remainder of the five-year monitoring schedule is shown below.

- April 2002 Year three monitoring event.
- April 2003 Year four monitoring event.
- April 2004 Year five (final) monitoring event.

6 SUMMARY AND CONCLUSIONS

Eight estuarine sediment samples were collected in April 2001 from the Norfolk CSO sediment remediation site, two years after completion of remedial activities. Samples were collected from the surface of backfill material placed at the site and analytical results were compared to baseline chemical conditions of the backfill material to evaluate possible recontamination at the site.

Samples were collected from two depth strata at each of four stations: one sample collected from the 0 to 2 cm depth stratum to evaluate chemical concentrations in recently deposited sediment; and one sample collected from the 0 to 10 cm depth stratum to evaluate sediment chemical concentrations over the entire biologically active zone. Analytes included sediment conventionals along with metal and organic parameters required under SMS criteria.

To allow comparison of analytical results from the four monitoring events completed to date, dry weight-normalized data from 0 to 10 cm depth stratum samples from the April 1999, October 1999, April 2000, and April 2001 monitoring events are presented in Table 8. These analytical results show that, after two years, conditions of the backfill material within the 0 to 10 cm depth stratum can be characterized by:

- an increase in organic carbon content at all stations except the Boeing storm drain channel station (NFK503);
- little or no change in grain size distribution at the combined channel delta station (NFK502), an increase in fine materials at the Norfolk CSO channel station (NFK501) and the upriver reference station (NFK504), and a decrease in fine materials at the Boeing storm drain station (NFK503);
- little or no change in metal concentrations at all four stations;
- the presence of low concentrations of a few PAH compounds at some stations, varying both spatially and temporally, with no indication of a trend toward increasing concentrations;
- the presence of butyl benzyl phthalate at the Norfolk CSO channel station (NFK501), the combined channel delta station (NFK502), and the upriver reference station (NFK504), however, this chemical was not detected during previous monitoring events;
- the presence of measurable concentrations of bis(2-ethylhexyl) phthalate at the Norfolk CSO channel station (NFK501), the combined channel delta station (NFK502), and the upriver reference station (NFK504), however, this chemical was previously not quantifiable due to laboratory sample contamination; and
- increasing concentrations of PCBs at all four stations, however, concentrations of this chemical increased dramatically at the Boeing storm drain channel station (NFK503) between the last two monitoring events (April 2000 and April 2001).

A comparison of dry weight-normalized analytical results from the 0 to 2 cm depth stratum between the October 1999, April 2000, and April 2001 monitoring events is presented in Table 9. These analytical results show that, after two years, conditions of the backfill material within the 0 to 2 cm depth stratum can be characterized by:

- an increase in organic carbon content at the Norfolk CSO channel station (NFK501) and the upriver reference station (NFK504);
- a steady decrease in fine materials at the combined channel delta station (NFK502) and the Boeing storm drain channel station (NFK503) and some temporal variability in the quantity of fine materials at the Norfolk CSO channel station (NFK501) and the upriver reference station (NFK504);
- consistent concentrations of metals at area background levels;
- more frequently-detected PAH compounds, although at concentrations well below the SQS (typically, less than 10% of the SQS value);
- the presence of butyl benzyl phthalate at the Norfolk CSO channel station (NFK501), the combined channel delta station (NFK502), and the upriver reference station (NFK504), however, this chemical was not detected during previous monitoring events:
- the presence of measurable concentrations of bis(2-ethylhexyl) phthalate at the Norfolk CSO channel station (NFK501), the combined channel delta station (NFK502), and the upriver reference station (NFK504), however, this chemical was previously not quantifiable due to laboratory sample contamination; and
- increasing concentrations of PCBs at all four stations, however, concentrations increased dramatically at the Boeing storm drain channel station (NFK503).

Metals concentrations throughout the backfill material at the Norfolk sediment remediation site continue to be detected at concentrations indicative of regional background levels (Dexter et al, 1981). Cadmium and silver have rarely been detected in samples collected from the site and arsenic and mercury have been detected infrequently. Discharges from the Norfolk CSO and Boeing storm drain to not appear to be impacting metals' concentrations in the backfill material.

While low levels of bis(2-ethylhexyl) phthalate have been detected in samples collected during previous monitoring events, the concentrations have not been statistically different from concentrations detected in associated analytical method blanks. Bis(2-ethylhexyl) phthalate concentrations detected in samples collected during the April 2001 monitoring event, however, are significantly higher than method blank concentrations at the Norfolk CSO channel station (NFK501), the combined channel delta station (NFK502), and the upriver reference station (NFK504). Organic carbon-normalization of bis(2-ethylhexyl) phthalate concentrations is appropriate at these three stations given the TOC concentrations of 0.5 to 1.6%. Organic carbon-normalized bis(2-ethylhexyl) phthalate concentrations at these three stations range from 24.9 to 42.7 mg/Kg OC. These concentrations are all less than the SQS chemical criterion of 47 mg/Kg OC, however, the concentration detected at the Norfolk CSO channel station (NFK501) is 91% of the SQS, the concentration detected at the combined channel delta station (NFK502) is 67% of the SQS, and the concentration detected at the upriver reference station (NFK504) is 53% of the SQS.

Butyl benzyl phthalate was detected at the Norfolk CSO channel station (NFK501), the combined channel delta station (NFK502), and the upriver reference station (NFK504) at organic carbon-normalized concentrations of 2.24 to 6.63 mg/Kg OC. Butyl benzyl phthalate concentrations in the samples collected from the 0 to 10 cm depth stratum at stations NFK501 (6.63 mg/Kg OC) and NFK502 (5.03mg/Kg OC) exceed the SQS chemical criterion

of 4.9 mg/Kg OC. This compound has not been detected during previous monitoring events and has not been detected at the Boeing storm drain channel station. The low concentrations present and lack of continuous temporal data make it difficult to assess a source at this point, however, there does appear to be a slight concentration gradient for butyl benzyl plithalate toward the Norfolk CSO.

Several HPAH compounds were detected for the first time during the April 2001 monitoring event. Two of these compounds, anthracene and indeno(1,2,3-c,d)pyrene, appear to be the result of significant improvements in analytical method detection limits. HPAH data do not appear to be following any spatial or temporal trends with no apparent concentration gradients. Concentrations of HPAHs detected in samples collected during the April 2001 monitoring event continue to be well below the SQS or LAET with most values less than 10% of the SQS.

Samples collected from two of four stations during the April 2001 monitoring event have PCB concentrations that exceed SMS criteria. The highest PCB concentrations were detected in the samples collected from the Boeing storm drain channel station (NFK503) and the second highest PCB concentrations were detected in the samples collected from the combined channel delta station (NFK502).

The organic carbon content of the samples collected from the Boeing storm drain channel (0.28 and 0.36%) indicates that dry weight-normalized PCB concentrations should be compared to LAET criteria. Dry weight-normalized PCB concentrations in both depth strata at station NFK503 exceed the 2LAET chemical criterion, which is equivalent to the CSL. The Boeing storm drain channel station is located upstream of the combined channel delta station (NFK502), which had a lower PCB concentration; exceeding the SQS but not the CSL in samples collected from both depth strata. The concentration gradient indicates PCBs on the backfill material are coming from the direction of the Boeing storm drain.

PCB concentrations detected at the Norfolk CSO channel station (NFK501) and the upriver reference station (NFK504) were well below the SQS for both depth strata.

A similar pattern of PCB distribution was observed in samples collected at six months (October 1999) and one year (April 2000) after placement of the backfill material. A follow-up sampling event to track potential sources for the apparent PCB re-contamination of the backfill was completed in February 2000. Results from this sampling event revealed an area of high PCB concentrations (4,900 to 8,400 µg/Kg DW) in sediment in front of the Boeing storm drain outfall. This suggests the most likely source of PCB recontamination to the storm drain channel is the erosion of PCB-contaminated sediments adjacent to the Boeing storm drain pipe outfall (King County 2000).

Boeing conducted a source control investigation of their storm drain and found PCB concentrations that exceed the CSL (on a dry weight-basis) in storm drain sediment (Boeing, 2001), however, Boeing discounts the storm drain as a possible PCB source to the storm drain channel and backfill material. Boeing acknowledges the presence of high PCB

concentrations in sediment in front of the storm drain outfall but states that this is not from their storm drain.

Summary of Issues by Monitoring Station

Norfolk CSO Channel (Station NFK501) – The concentration of bis(2-ethylhexyl) phthalate detected in the 0 to 2 cm depth stratum is 91% of the SQS. The reported concentration of this compound does not appear to be compromised by laboratory contamination. The concentration of butyl benzyl phthalate detected in the 0 to 10 cm depth stratum exceeds the SQS. Phthalates are present in both CSO and separated storm water but the greatest potential for recontamination at the Norfolk cleanup site was predicted to be from separated storm water discharged from the Norfolk CSO outfall (EBDRP, 1996).

Combined Channel Delta (Station NFK502) – The concentration of butyl benzyl phthalate detected in the 0 to 10 cm depth stratum exceeds the SQS. The concentrations of PCBs detected in both depth strata exceed the SQS. It appears that PCBs detected at this station originate from the Boeing storm drain channel and phthalates may be related to the Norfolk CSO outfall.

Boeing Storm Drain Channel (Station NFK503) – The concentrations of PCBs detected in both depth strata exceed the 2LAET, which is considered equivalent to the CSL value when organic carbon concentrations are less than 0.5%. The greatest source of PCB recontamination appears to be the erosion of PCB-contaminated sediment directly in front of the Boeing storm drain. Boeing believes this is not related to their storm drain so the issue has been referred to the project regulatory agencies.

Upriver Reference (Station NFK504) – No chemicals of concern at this time, although reportable concentrations of bis(2-ethylhexyl) phthalate and butyl benzyl phthalate are present for the first time in samples collected during this monitoring event.

7 REFERENCES

Boeing, 2001. Data Summary of PCB Sampling from Accumulated Solids and Construction Materials In and Around Storm Sewer Lines at the Development Center. Prepared for the Boeing Company by Project Performance Corporation. Bellevue, Washington.

Dexter et al., 1981. Comparison Between Average Crustal Metal Concentrations and Average Metal Concentrations in Puget Sound Regional Soils. National Oceanic and Atmospheric Administration Technical Memorandum OMPA-13 (Table VIII-1). Seattle, Washington.

EBDRP, 1996. Norfolk CSO Sediment Cleanup Study. Prepared for the Elliott Bay/Duwamish Restoration Program Panel by the King County Water Pollution Control Division. Seattle, Washington.

EBDRP, 1999. Norfolk CSO Sediment Remediation Project Closure Report Prepared for the Elliott Bay/Duwamish Restoration Program Panel by The EcoChem Team. Seattle, Washington.

Ecology, 1989. Puget Sound Dredged Disposal Analysis Guidance Manual, Data Quality Evaluation for Proposed Dredged Material Disposal Projects. Prepared for the Washington State Department of Ecology by PTI Environmental Services. Olympia, Washington.

Ecology, 1992. Technical Information Memorandum, Organic Carbon Normalization of Sediment Data. Prepared by Teresa Michelsen for the Washington State Department of Ecology Sediment Management Unit. Olympia, Washington.

Ecology, 1995. Sediment Management Standards, Chapter 173-204 WAC. Washington State Department of Ecology. Olympia, Washington.

EPA, 1988. Sediment Quality Values Refinement: 1988 Update and Evaluation of Puget Sound AET. Prepared for the U.S. Environmental Protection Agency Region 10 by PTI Environmental Services. Seattle, Washington.

EPA, 1991. National Functional Guidelines for Organic Data Review, Multi-Media, Multi-Concentration (OLM01.0) and Low Concentration Water (OLC01.0). United States Environmental Protection Agency. Washington, D.C.

King County, 1999. Norfolk Sediment Backfill Sampling and Analysis Plan Addendum, Five-Year Monitoring Plan. King County Department of Natural Resources, Water and Land Resources Division. Seattle, Washington.

King County, 2000. Norfolk CSO Sediment Remediation Project, Five-Year Monitoring Program, Six-month Post-construction Monitoring Report. October 1999. King County Department of Natural Resources, Water and Land Resources Division. Seattle, Washington.

King County, 2000. Norfolk CSO Sediment Remediation Project, Five-Year Monitoring Program, Annual Monitoring Report – Year One, April 2000. King County Department of Natural Resources, Water and Land Resources Division. Seattle, Washington.

PSEP, 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Prepared for the Puget Sound Estuary Program (U.S. Environmental Protection Agency Region 10) by Tetra Tech, Inc. Seattle, Washington.

PSEP, 1996a. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Prepared for the Puget Sound Estuary Program (U.S. Environmental Protection Agency Region 10) by the King County Environmental Laboratory. Seattle, Washington.

PSEP, 1996b. Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment and Tissue Samples. Prepared for the Puget Sound Estuary Program (U.S. Environmental Protection Agency Region 10) by the King County Environmental Laboratory. Seattle, Washington.

PSEP, 1996c. Recommended Guidelines for Measuring Organic Compounds in Puget Sound Marine Water, Sediment and Tissue Samples. Prepared for the Puget Sound Estuary Program (U.S. Environmental Protection Agency Region 10) by the King County Environmental Laboratory. Seattle, Washington.

PSEP, 1998. Recommended Guidelines for Station Positioning in Puget Sound. Prepared for the Puget Sound Estuary Program (U.S. Environmental Protection Agency Region 10) by the King County Environmental Laboratory. Seattle, Washington.

Table 1
Sample Location Coordinates
Norfolk CSO Sediment Remediation Project
Five-Year Monitoring Program
Year Two - April 2001 Monitoring Data

Station Name	Northing	(NAD83)	Easting	(NAD83)
NFK501 Prescribed Station	190170		1278584	
NFK501 Grab 1		190154		1278590
NFK501 Grab 2		190146		1278581
NFK501 Grab 3		190159		1278577
NFK502 Prescribed Station	190159		1278514	
NFK502 Grab 1		190154		1278509
NFK502 Grab 2		190157		1278513
NFK502 Grab 3		190157		1278514
NFK503 Prescribed Station	190195		12785 44	
NFK503 Grab 1		190175	l	1278555
NFK503 Grab 2		190181		1278547
NFK503 Grab 3		190176		1278545
NFK504 Prescribed Station	190080		1278625	
NFK504 Grab 1		190072		1278628
NFK504 Grab 2		190077		1278624
NFK504 Grab 3		190077		1278622

Notes

NAD83 - North American Datum, 1983

Table 2
Particle Size Distribution
Norfolk CSO Sediment Remediation Project
Five-Year Monitoring Program
Year Two - April 2001 Monitoring Data

1	D,		ce		٠	n		٠.	ih	 4:	٠.	
	$-\epsilon$	٦r.	ce	ın	T	1)	15	тr	เก	 TL	n	1

			Percent D	istribution	
		NFK 501	NFK501	NFK502	NFK502
Phi Size	Class	0 - 2 cm	0 - 10 cm	0 - 2 cm	0 - 10 cm
>p-2.00	Gravel	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl></td></mdl>	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl>	<mdl (0.1)<="" td=""></mdl>
p-2.00	Gravel	<mdl (0.1)<="" td=""><td>0.6</td><td><mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl></td></mdl>	0.6	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl>	<mdl (0.1)<="" td=""></mdl>
p-1.00	Gravel	0.2	0.9	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl>	<mdl (0.1)<="" td=""></mdl>
	Total Gravel	0.2	1.5	< MDL (0.1)	< MDL (0.1)
p0.00	Sand	1.8	1.8	1.0	0.7
p+1.00	Sand	16.3	15.7	19.6	19.2
p+2.00	Sand	42.6	36.5	54.5	58.9
p+3.00	Sand	9.2	11.3	11.2	9.5
p+4.00	Sand	11.6	13.5	2.8	2.4
	Total Sand	81.5	78.8	89.1	90.7
p+5.00	Silt	6.1	6.9	1.8	2.2
p+6.00	Silt	3.8	4.5	2.5	2.0
p+7.00	Silt	2.4	3.0	1.8	1.4
p+8.00	Silt	2.2	2.2	1.6	1.2
	Total Silt	14.5	16.6	7.7	6.8
p+9.00	Clay	1.5	1.5	1.2	0.9
p+10.00	Clay	1.0	0.8	0.7	0.6
<p+10.00< td=""><td>Clay</td><td>1.3</td><td>1.4</td><td>1.2</td><td>0.9</td></p+10.00<>	Clay	1.3	1.4	1.2	0.9
	Total Clay	3.8	3.7	3.1	2.4

Percent Distribution

		· Oloone Bloth Button								
Phi Size	Class	NFK503 0 - 2 cm	NFK503 0 - 10 cm	NFK504 0 - 2 cm	NFK504 0 - 10 cm					
>p-2.00	Gravel	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl></td></mdl>	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""></mdl></td></mdl>	<mdl (0.1)<="" td=""></mdl>					
p-2.00	Gravel	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td>0.2</td></mdl></td></mdl></td></mdl>	<mdl (0.1)<="" td=""><td><mdl (0.1)<="" td=""><td>0.2</td></mdl></td></mdl>	<mdl (0.1)<="" td=""><td>0.2</td></mdl>	0.2					
p-1.00	Gravel	1.0	1.0	0.5	0.3					
	Total Gravel	1.0	1.0	0.5	0.5					
p0.00	Sand	4.9	4.1	2.8	2.1					
p 1.00	Sand	28.6	32.1	21.7	15.4					
p+2.00	Sand	55.7	55.0	43.3	30.4					
p+3.00	Sand	5.9	5.2	6.8	6.5					
p+4.00	Sand	0.8	0.6	6.1	11.0					
-	Total Sand	95.9	97.0	80.7	65.4					
p+5.00	Silt	1.8	1	4.2	14.2					
p+6.00	Silt	0.3	0.2	4.8	6.3					
p+7.00	Silt	0.3	0.2	3.1	4.2					
p+8.00	Silt	0.2	0.1	2.3	3					
·	Total Silt	2.6	1.5	14.4	27.7					
p+9.00	Clay	0.1	0.2	1.6	2.2					
p+10.00	Clay	0.1	<mdl (0.1)<="" td=""><td>0.9</td><td>1.1</td></mdl>	0.9	1.1					
<p+10.00< td=""><td>Clay</td><td>0.4</td><td>0.4</td><td>2.1</td><td>3.3</td></p+10.00<>	Clay	0.4	0.4	2.1	3.3					
	Total Clay	0.6	0.6	4.6	6.6					

Table 3
Sediment Conventionals
Norfolk CSO Sediment Remediation Project
Five-Year Monitoring Program
Year Two - April 2001 Monitoring Data

Conventionals	NFK 501 0 - 2 cm	NFK501 0 - 10 cm	NFK502 0 - 2 cm	NKF502 0 - 10 cm
Solids (%)	68.5	65.4	67.1	66.5
TOC (mg/Kg DW)	8,180	8,670	6,510	4,990

Conventionals	NFK503 0 - 2 cm	NFK503 0 - 10 cm	NFK504 0 - 2 cm	NFK504 0 - 10 cm
Solids (%)	74.7	74.1	52.7	60.1
TOC (mg/Kg DW)	2,770	3,600	15,600	9,080

<u>Notes</u>

TOC - Total organic carbon.

mg/Kg DW - Milligrams per kilogram dry weight, based on percent solids analysis.

Table 4
Sediment Metal Concentrations
Norfolk CSO Sediment Remediation Project
Five-Year Monitoring Program
Year Two - April 2001 Monitoring Data

Concentration (mg/Kg DW)

	NFK501	NFK501	NFK502	NFK502		
Metal	0 - 2 cm	0 - 10 cm	0 - 2 cm	0 - 10 cm	sqs	CSL
Arsenic	<mdl (3.6)<="" td=""><td><mdl (3.8)<="" td=""><td><mdl (3.6)<="" td=""><td><mdl (3.6)<="" td=""><td>57</td><td>93</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (3.8)<="" td=""><td><mdl (3.6)<="" td=""><td><mdl (3.6)<="" td=""><td>57</td><td>93</td></mdl></td></mdl></td></mdl>	<mdl (3.6)<="" td=""><td><mdl (3.6)<="" td=""><td>57</td><td>93</td></mdl></td></mdl>	<mdl (3.6)<="" td=""><td>57</td><td>93</td></mdl>	57	93
Cadmium	<mdl (0.22)<="" td=""><td><mdl (0.23)<="" td=""><td><mdl (0.21)<="" td=""><td><mdl (0.23)<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.23)<="" td=""><td><mdl (0.21)<="" td=""><td><mdl (0.23)<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl></td></mdl>	<mdl (0.21)<="" td=""><td><mdl (0.23)<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl>	<mdl (0.23)<="" td=""><td>5.1</td><td>6.7</td></mdl>	5.1	6.7
Chromium	16.1	17.4	16.7	13.3	260	270
Copper	17.2	18.5	15.5	13.1	390	390
Lead	11.6	11.8	9.39	9.62	450	530
Mercury	0.069	0.043	0.031	<mdl (0.030)<="" td=""><td>0.41</td><td>0.59</td></mdl>	0.41	0.59
Silver	<mdl (0.29)<="" td=""><td><mdl (0.31)<="" td=""><td><mdl (0.28)<="" td=""><td><mdl (0.30)<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.31)<="" td=""><td><mdl (0.28)<="" td=""><td><mdl (0.30)<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl></td></mdl>	<mdl (0.28)<="" td=""><td><mdl (0.30)<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl>	<mdl (0.30)<="" td=""><td>6.1</td><td>6.1</td></mdl>	6.1	6.1
Zinc	56.6	59.0	51.6	46.5	410	960

Concentration (mg/Kg DW)

	NFK503	NFK503	NFK504	NFK504		
Metal	0 - 2 cm	0 - 10 cm	0 - 2 cm	0 - 10 cm	sqs	CSL
Arsenic	<mdl (3.3)<="" td=""><td><mdl (3.2)<="" td=""><td><mdl (4.7)<="" td=""><td><mdl (4.2)<="" td=""><td>57</td><td>93</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (3.2)<="" td=""><td><mdl (4.7)<="" td=""><td><mdl (4.2)<="" td=""><td>57</td><td>93</td></mdl></td></mdl></td></mdl>	<mdl (4.7)<="" td=""><td><mdl (4.2)<="" td=""><td>57</td><td>93</td></mdl></td></mdl>	<mdl (4.2)<="" td=""><td>57</td><td>93</td></mdl>	57	93
Cadmium	<mdl (0.20)<="" td=""><td><mdl (0.20)<="" td=""><td><mdl (0.28)<="" td=""><td><mdl (0.25)<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.20)<="" td=""><td><mdl (0.28)<="" td=""><td><mdl (0.25)<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl></td></mdl>	<mdl (0.28)<="" td=""><td><mdl (0.25)<="" td=""><td>5.1</td><td>6.7</td></mdl></td></mdl>	<mdl (0.25)<="" td=""><td>5.1</td><td>6.7</td></mdl>	5.1	6.7
Chromium	13.9	12.0	21.1	17.8	260	270
Copper	11.4	12.9	24.9	18.8	390	390
Lead	7.36	7.83	18.0	13.8	450	530
Mercury	<mdl (0.025)<="" td=""><td>0.10</td><td>0.072</td><td>0.038</td><td>0.41</td><td>0.59</td></mdl>	0.10	0.072	0.038	0.41	0.59
Silver	<mdl (0.27)<="" td=""><td><mdl (0.26)<="" td=""><td><mdl (0.38)<="" td=""><td><mdl (0.33)<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.26)<="" td=""><td><mdl (0.38)<="" td=""><td><mdl (0.33)<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl></td></mdl>	<mdl (0.38)<="" td=""><td><mdl (0.33)<="" td=""><td>6.1</td><td>6.1</td></mdl></td></mdl>	<mdl (0.33)<="" td=""><td>6.1</td><td>6.1</td></mdl>	6.1	6.1
Zinc	43.4	46.4	68.3	60.6	410	960

<u>Notes</u>

mg/Kg DW - Milligrams per kilogram dry weight, based on percent solids analysis.

<MDL (#) - Analyte not detected above the method detection limit. Value is parentheses is the numeric MDL.

Table 5
Sediment Ionic Organic Concentrations
Norfolk CSO Sediment Remediation Project
Five-Year Monitoring Program
Year Two - April 2001 Monitoring Data

Concentration (µg/Kg DW)

	NFK501	NFK501	NFK502	NFK502		
Ionic Organics	0 - 2 cm	0 - 10 cm	0 - 2 cm	0 - 10 cm	sqs	CSL
Benzoic Acid	299	122	162	152	650	650
Benzyl Alcohol	<mdl (8.8)<="" td=""><td><mdl (9.2)<="" td=""><td><mdl (8.9)<="" td=""><td><mdl (9.0)<="" td=""><td>57</td><td>73</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (9.2)<="" td=""><td><mdl (8.9)<="" td=""><td><mdl (9.0)<="" td=""><td>57</td><td>73</td></mdl></td></mdl></td></mdl>	<mdl (8.9)<="" td=""><td><mdl (9.0)<="" td=""><td>57</td><td>73</td></mdl></td></mdl>	<mdl (9.0)<="" td=""><td>57</td><td>73</td></mdl>	57	73
2,4-Dimethylphenol	<mdl (10)<="" td=""><td><mdl (11)<="" td=""><td><mdl (10)<="" td=""><td><mdl (11)<="" td=""><td>29</td><td>29</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (11)<="" td=""><td><mdl (10)<="" td=""><td><mdl (11)<="" td=""><td>29</td><td>29</td></mdl></td></mdl></td></mdl>	<mdl (10)<="" td=""><td><mdl (11)<="" td=""><td>29</td><td>29</td></mdl></td></mdl>	<mdl (11)<="" td=""><td>29</td><td>29</td></mdl>	29	29
2-Methylphenol	<mdl (28)<="" td=""><td><mdl (29)<="" td=""><td><mdl (28)<="" td=""><td><mdl (29)<="" td=""><td>63</td><td>63</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (29)<="" td=""><td><mdl (28)<="" td=""><td><mdl (29)<="" td=""><td>63</td><td>63</td></mdl></td></mdl></td></mdl>	<mdl (28)<="" td=""><td><mdl (29)<="" td=""><td>63</td><td>63</td></mdl></td></mdl>	<mdl (29)<="" td=""><td>63</td><td>63</td></mdl>	63	63
4-Methylphenol	<mdl (23)<="" td=""><td><mdl (24)<="" td=""><td><mdl (24)<="" td=""><td><mdl (24)<="" td=""><td>670</td><td>670</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (24)<="" td=""><td><mdl (24)<="" td=""><td><mdl (24)<="" td=""><td>670</td><td>670</td></mdl></td></mdl></td></mdl>	<mdl (24)<="" td=""><td><mdl (24)<="" td=""><td>670</td><td>670</td></mdl></td></mdl>	<mdl (24)<="" td=""><td>670</td><td>670</td></mdl>	670	670
Pentachlorophenol	<mdl (7.3)<="" td=""><td><mdl (7.6)<="" td=""><td><mdl (7.5)<="" td=""><td><mdl (7.5)<="" td=""><td>360</td><td>690</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (7.6)<="" td=""><td><mdl (7.5)<="" td=""><td><mdl (7.5)<="" td=""><td>360</td><td>690</td></mdl></td></mdl></td></mdl>	<mdl (7.5)<="" td=""><td><mdl (7.5)<="" td=""><td>360</td><td>690</td></mdl></td></mdl>	<mdl (7.5)<="" td=""><td>360</td><td>690</td></mdl>	360	690
Phenol	<mul (13)<="" td=""><td><mul (14)<="" td=""><td><mdl (13)<="" td=""><td><mdl (14)<="" td=""><td>420</td><td>1,200</td></mdl></td></mdl></td></mul></td></mul>	<mul (14)<="" td=""><td><mdl (13)<="" td=""><td><mdl (14)<="" td=""><td>420</td><td>1,200</td></mdl></td></mdl></td></mul>	<mdl (13)<="" td=""><td><mdl (14)<="" td=""><td>420</td><td>1,200</td></mdl></td></mdl>	<mdl (14)<="" td=""><td>420</td><td>1,200</td></mdl>	420	1,200

Concentration (µg/Kg DW)

	NFK503	NFK503	NFK504	NFK504		
Ionic Organics	0 - 2 cm	0 - 10 cm	0 - 2 cm	0 - 10 cm	sqs	CSL
Benzoic Acid	80.9	67.6	268	168	650	650
Benzyl Alcohol	<mdl (8.0)<="" td=""><td><mdl (8.1)<="" td=""><td><mdl (11)<="" td=""><td><mdl (10)<="" td=""><td>57</td><td>73</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (8.1)<="" td=""><td><mdl (11)<="" td=""><td><mdl (10)<="" td=""><td>57</td><td>73</td></mdl></td></mdl></td></mdl>	<mdl (11)<="" td=""><td><mdl (10)<="" td=""><td>57</td><td>73</td></mdl></td></mdl>	<mdl (10)<="" td=""><td>57</td><td>73</td></mdl>	57	73
2,4-Dimethylphenol	<mdl (9.4)<="" td=""><td><mdl (9.4)<="" td=""><td><mdl (13)<="" td=""><td><mdl (12)<="" td=""><td>29</td><td>29</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (9.4)<="" td=""><td><mdl (13)<="" td=""><td><mdl (12)<="" td=""><td>29</td><td>29</td></mdl></td></mdl></td></mdl>	<mdl (13)<="" td=""><td><mdl (12)<="" td=""><td>29</td><td>29</td></mdl></td></mdl>	<mdl (12)<="" td=""><td>29</td><td>29</td></mdl>	29	29
2-Methylphenol	<mdl (25)<="" td=""><td><mdl (26)<="" td=""><td><mdl (36)<="" td=""><td><mdl (32)<="" td=""><td>63</td><td>63</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (26)<="" td=""><td><mdl (36)<="" td=""><td><mdl (32)<="" td=""><td>63</td><td>63</td></mdl></td></mdl></td></mdl>	<mdl (36)<="" td=""><td><mdl (32)<="" td=""><td>63</td><td>63</td></mdl></td></mdl>	<mdl (32)<="" td=""><td>63</td><td>63</td></mdl>	63	63
4-Methylphenol	<mdl (21)<="" td=""><td><mdl (22)<="" td=""><td><mdl (30)<="" td=""><td><mdl (27)<="" td=""><td>670</td><td>670</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (22)<="" td=""><td><mdl (30)<="" td=""><td><mdl (27)<="" td=""><td>670</td><td>670</td></mdl></td></mdl></td></mdl>	<mdl (30)<="" td=""><td><mdl (27)<="" td=""><td>670</td><td>670</td></mdl></td></mdl>	<mdl (27)<="" td=""><td>670</td><td>670</td></mdl>	670	670
Pentachlorophenol	<mdl (6.7)<="" td=""><td><mdl (6.7)<="" td=""><td><mdl (9.5)<="" td=""><td><mdl (8.3)<="" td=""><td>360</td><td>690</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (6.7)<="" td=""><td><mdl (9.5)<="" td=""><td><mdl (8.3)<="" td=""><td>360</td><td>690</td></mdl></td></mdl></td></mdl>	<mdl (9.5)<="" td=""><td><mdl (8.3)<="" td=""><td>360</td><td>690</td></mdl></td></mdl>	<mdl (8.3)<="" td=""><td>360</td><td>690</td></mdl>	360	690
Phenol	<mdl (12)<="" td=""><td><mdl (12)<="" td=""><td><mdl (17)<="" td=""><td><mdl (15)<="" td=""><td>420</td><td>1,200</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (12)<="" td=""><td><mdl (17)<="" td=""><td><mdl (15)<="" td=""><td>420</td><td>1,200</td></mdl></td></mdl></td></mdl>	<mdl (17)<="" td=""><td><mdl (15)<="" td=""><td>420</td><td>1,200</td></mdl></td></mdl>	<mdl (15)<="" td=""><td>420</td><td>1,200</td></mdl>	420	1,200

Notes

 $\mu g/Kg \; DW$ - Micrograms per kilogram dry weight, based on percent solids analysis.

<MDL (#) - Analyte not detected above the method detection limit. Value in parentheses is the numeric MDL.

Table 6
Sediment Non-Ionic Organic Concentrations (Organic Carbon Normalized)
Norfolk CSO Sediment Remediation Project
Five-Year Monitoring Program
Year Two - April 2001 Monitoring Data

Concentration (mg/Kg OC)						
	NFK501	NFK501	NFK502	NFK502		1
	0 - 2 cm	0 - 10 cm	0 - 2 cm	0 - 10 cm		
Non-Ionic Organics	TOC 0.82%	TOC 0.87%	TOC 0.65%	TOC 0.50%	SQS	CSL
LPAHS					•	
Acenaphthene	<mdl (1.3)<="" td=""><td><mdl (1.2)<="" td=""><td><mdl (1.6)<="" td=""><td><mdl (2.1)<="" td=""><td>16</td><td>57</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (1.2)<="" td=""><td><mdl (1.6)<="" td=""><td><mdl (2.1)<="" td=""><td>16</td><td>57</td></mdl></td></mdl></td></mdl>	<mdl (1.6)<="" td=""><td><mdl (2.1)<="" td=""><td>16</td><td>57</td></mdl></td></mdl>	<mdl (2.1)<="" td=""><td>16</td><td>57</td></mdl>	16	57
Acenaphthylene	<mdl (2.7)<="" td=""><td><mdl (2.6)<="" td=""><td><mdl (3.4)<="" td=""><td><mdl (4.5)<="" td=""><td>66</td><td>66</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (2.6)<="" td=""><td><mdl (3.4)<="" td=""><td><mdl (4.5)<="" td=""><td>66</td><td>66</td></mdl></td></mdl></td></mdl>	<mdl (3.4)<="" td=""><td><mdl (4.5)<="" td=""><td>66</td><td>66</td></mdl></td></mdl>	<mdl (4.5)<="" td=""><td>66</td><td>66</td></mdl>	66	66
Anthracene	0.98	1.2	1.1	1.4	220	1,200
Fluorene	<mdl (2.3)<="" td=""><td><mdl (2.3)<="" td=""><td><mdl (3.0)<="" td=""><td><mdl (3.9)<="" td=""><td>23</td><td>79</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (2.3)<="" td=""><td><mdl (3.0)<="" td=""><td><mdl (3.9)<="" td=""><td>23</td><td>79</td></mdl></td></mdl></td></mdl>	<mdl (3.0)<="" td=""><td><mdl (3.9)<="" td=""><td>23</td><td>79</td></mdl></td></mdl>	<mdl (3.9)<="" td=""><td>23</td><td>79</td></mdl>	23	79
2-Methylnaphthalene	<mdl (2.5)<="" td=""><td><mdl (2.5)<="" td=""><td><mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>38</td><td>64</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (2.5)<="" td=""><td><mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>38</td><td>64</td></mdl></td></mdl></td></mdl>	<mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>38</td><td>64</td></mdl></td></mdl>	<mdl (4.2)<="" td=""><td>38</td><td>64</td></mdl>	38	64
Naphthalene	<mdl (2.5)<="" td=""><td><mdl (2.5)<="" td=""><td><mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>99</td><td>170</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (2.5)<="" td=""><td><mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>99</td><td>170</td></mdl></td></mdl></td></mdl>	<mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>99</td><td>170</td></mdl></td></mdl>	<mdl (4.2)<="" td=""><td>99</td><td>170</td></mdl>	99	170
Phenanthrene	7.98	5.40	6.00	6.33	100	480
Total LPAH	9.0	6.6	7.1	7.7	370	780
HPAHs			1			
Benzo(a)anthracene	7.39	4.71	5.81	7.62	110	270
Benzo(a)pyrene	11.3	7.09	8.72	4.91	99	210
Benzofluoranthenes (Total)	24.2	15.9	19.6	23.5	230	450
Benzo(g,h,i)perylene	3.04	2.12	<mdl (1.8)<="" td=""><td><mdl (2.4)<="" td=""><td>31</td><td>78</td></mdl></td></mdl>	<mdl (2.4)<="" td=""><td>31</td><td>78</td></mdl>	31	78
Chrysene	10.0	7.16	7.53	8.40	110	460
Dibenzo(a,h)anthracene	<mdl (1.3)<="" td=""><td><mdl (1.2)<="" td=""><td><mdl (1.6)<="" td=""><td><mdl (2.1)<="" td=""><td>12</td><td>33</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (1.2)<="" td=""><td><mdl (1.6)<="" td=""><td><mdl (2.1)<="" td=""><td>12</td><td>33</td></mdl></td></mdl></td></mdl>	<mdl (1.6)<="" td=""><td><mdl (2.1)<="" td=""><td>12</td><td>33</td></mdl></td></mdl>	<mdl (2.1)<="" td=""><td>12</td><td>33</td></mdl>	12	33
Fluoranthene	19.8	14.3	16.8	20.0	160	1,200
Indeno(1,2,3-c,d)pyrene	4.11	2.47	3.43	<mdl (2.7)<="" td=""><td>34</td><td>88</td></mdl>	34	88
Pyrene	15.3	11.0	12.2	10.2	1,000	1,400
Total HPAH	95.1	64.8	74.1	74.6	960	5,300
Chlorobenzenes						
1,2-Dichlorobenzene	<mdl (0.046)<="" td=""><td><mdl (0.046)<="" td=""><td><mdl (0.060)<="" td=""><td><mdl (0.078)<="" td=""><td>2.3</td><td>2.3</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.046)<="" td=""><td><mdl (0.060)<="" td=""><td><mdl (0.078)<="" td=""><td>2.3</td><td>2.3</td></mdl></td></mdl></td></mdl>	<mdl (0.060)<="" td=""><td><mdl (0.078)<="" td=""><td>2.3</td><td>2.3</td></mdl></td></mdl>	<mdl (0.078)<="" td=""><td>2.3</td><td>2.3</td></mdl>	2.3	2.3
1,4-Dichlorobenzene	<mdl (0.023)<="" td=""><td><mdl (0.023)<="" td=""><td><mdl (0.030)<="" td=""><td><mdl (0.039)<="" td=""><td>3.1</td><td>9</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.023)<="" td=""><td><mdl (0.030)<="" td=""><td><mdl (0.039)<="" td=""><td>3.1</td><td>9</td></mdl></td></mdl></td></mdl>	<mdl (0.030)<="" td=""><td><mdl (0.039)<="" td=""><td>3.1</td><td>9</td></mdl></td></mdl>	<mdl (0.039)<="" td=""><td>3.1</td><td>9</td></mdl>	3.1	9
Hexachlorobenzene	<mdl (0.12)<="" td=""><td><mdl (0.12)<="" td=""><td><mdl (0.15)<="" td=""><td><mdl (0.20)<="" td=""><td>0.38</td><td>2.3</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.12)<="" td=""><td><mdl (0.15)<="" td=""><td><mdl (0.20)<="" td=""><td>0.38</td><td>2.3</td></mdl></td></mdl></td></mdl>	<mdl (0.15)<="" td=""><td><mdl (0.20)<="" td=""><td>0.38</td><td>2.3</td></mdl></td></mdl>	<mdl (0.20)<="" td=""><td>0.38</td><td>2.3</td></mdl>	0.38	2.3
1,2,4-Trichlorobenzene	<mdl (0.046)<="" td=""><td><mdl (0.046)<="" td=""><td><mdl (0.060)<="" td=""><td><mdl (0.078)<="" td=""><td>0.81</td><td>1.8</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.046)<="" td=""><td><mdl (0.060)<="" td=""><td><mdl (0.078)<="" td=""><td>0.81</td><td>1.8</td></mdl></td></mdl></td></mdl>	<mdl (0.060)<="" td=""><td><mdl (0.078)<="" td=""><td>0.81</td><td>1.8</td></mdl></td></mdl>	<mdl (0.078)<="" td=""><td>0.81</td><td>1.8</td></mdl>	0.81	1.8
Phthalates						
Bis(2-ethylhexyl) Phthalate	42.7	28.4	31.6	38.6	47	78
Butyl Benzyl Phthalate	3.63	##6:63##	3.89	送着5.03 维集	4.9	64
Di-N-butyl Phthalate	5.73, B	5.03, B	5.01, B	6.11, B	220	1,700
Di-N-octyl Phthalate	<mdl (1.4)<="" td=""><td><mdl (1.4)<="" td=""><td><mdl (1.8)<="" td=""><td><mdl (2.4)<="" td=""><td>58</td><td>4,500</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (1.4)<="" td=""><td><mdl (1.8)<="" td=""><td><mdl (2.4)<="" td=""><td>58</td><td>4,500</td></mdl></td></mdl></td></mdl>	<mdl (1.8)<="" td=""><td><mdl (2.4)<="" td=""><td>58</td><td>4,500</td></mdl></td></mdl>	<mdl (2.4)<="" td=""><td>58</td><td>4,500</td></mdl>	58	4,500
Diethyl Phthalate	<mdl (1.1)<="" td=""><td><mdl (1.1)<="" td=""><td><mdl (1.4)<="" td=""><td><mdl (1.8)<="" td=""><td>61</td><td>110</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (1.1)<="" td=""><td><mdl (1.4)<="" td=""><td><mdl (1.8)<="" td=""><td>61</td><td>110</td></mdl></td></mdl></td></mdl>	<mdl (1.4)<="" td=""><td><mdl (1.8)<="" td=""><td>61</td><td>110</td></mdl></td></mdl>	<mdl (1.8)<="" td=""><td>61</td><td>110</td></mdl>	61	110
Dimethyl Phthalate	<mdl (2.0)<="" td=""><td><mdl (1.9)<="" td=""><td><mdl (2.5)<="" td=""><td><mdl (3.3)<="" td=""><td>53</td><td>53</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (1.9)<="" td=""><td><mdl (2.5)<="" td=""><td><mdl (3.3)<="" td=""><td>53</td><td>53</td></mdl></td></mdl></td></mdl>	<mdl (2.5)<="" td=""><td><mdl (3.3)<="" td=""><td>53</td><td>53</td></mdl></td></mdl>	<mdl (3.3)<="" td=""><td>53</td><td>53</td></mdl>	53	53
Miscellaneous Compounds		:				
Dibenzofuran	<mdl (2.5)<="" td=""><td><mdl (2.5)<="" td=""><td><mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>15</td><td>58</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (2.5)<="" td=""><td><mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>15</td><td>58</td></mdl></td></mdl></td></mdl>	<mdl (3.2)<="" td=""><td><mdl (4.2)<="" td=""><td>15</td><td>58</td></mdl></td></mdl>	<mdl (4.2)<="" td=""><td>15</td><td>58</td></mdl>	15	58
Hexachlorobutadiene	<mdl (0.13)<="" td=""><td><mdl (0.13)<="" td=""><td><mdl (0.17)<="" td=""><td><mdl (0.23)<="" td=""><td>3.9</td><td>6.2</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.13)<="" td=""><td><mdl (0.17)<="" td=""><td><mdl (0.23)<="" td=""><td>3.9</td><td>6.2</td></mdl></td></mdl></td></mdl>	<mdl (0.17)<="" td=""><td><mdl (0.23)<="" td=""><td>3.9</td><td>6.2</td></mdl></td></mdl>	<mdl (0.23)<="" td=""><td>3.9</td><td>6.2</td></mdl>	3.9	6.2
N-Nitrosodiphenylamine	<mdl (3.6)<="" td=""><td><mdl (3.5)<="" td=""><td><mdl (4.6)<="" td=""><td><mdl (6.0)<="" td=""><td>11</td><td>11</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (3.5)<="" td=""><td><mdl (4.6)<="" td=""><td><mdl (6.0)<="" td=""><td>11</td><td>11</td></mdl></td></mdl></td></mdl>	<mdl (4.6)<="" td=""><td><mdl (6.0)<="" td=""><td>11</td><td>11</td></mdl></td></mdl>	<mdl (6.0)<="" td=""><td>11</td><td>11</td></mdl>	11	11
PCBs						<u></u>
Total PCBs	7.4	4.09	24.8/6	18.9 W	12	65

Notes

- mg/Kg OC Milligrams per kilogram organic carbon, based on total organic carbon analysis.
- <MDL (#) Analyte not detected above the *method dection limit*. Value in parentheses is the numeric MDL.
 - TOC % Percent total organic carbon on a dry weight basis, based on total solids analysis.
- Shaded Cell with Double Border Detected concentration exceeds the SQS and/or CSL.
 - B Compound detected in laboratory method blank. Sample concentration is less than 5 times the method blank concentration and should be discounted

Table 6 (cont.) Sediment Non-Ionic Organic Concentrations (Organic Carbon Normalized) Norfolk CSO Sediment Remediation Project Five-Year Monitoring Program Year Two - April 2001 Monitoring Data

	C	oncentration	n (mg/Kg O	C)		
	NFK503	NFK503	NFK504	NFK504		
	0 - 2 cm	0 - 10 cm	0 - 2 cm	0 - 10 cm		
Non-Ionic Organics	TOC 0.28%	TOC 0.36%	TOC 1.56%	TOC 0.91%	sqs_	CSL
LPAHS						
Acenaphthene	<mdl (3.4)<="" td=""><td><mdl (2.6)<="" td=""><td><mdl (0.85)<="" td=""><td><mdl (1.3)<="" td=""><td>16</td><td>57</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (2.6)<="" td=""><td><mdl (0.85)<="" td=""><td><mdl (1.3)<="" td=""><td>16</td><td>57</td></mdl></td></mdl></td></mdl>	<mdl (0.85)<="" td=""><td><mdl (1.3)<="" td=""><td>16</td><td>57</td></mdl></td></mdl>	<mdl (1.3)<="" td=""><td>16</td><td>57</td></mdl>	16	57
Acenaphthylene	<mdl (7.2)<="" td=""><td><mdl (5.6)<="" td=""><td><mdl (1.8)<="" td=""><td><mdl (2.7)<="" td=""><td>66</td><td>66</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (5.6)<="" td=""><td><mdl (1.8)<="" td=""><td><mdl (2.7)<="" td=""><td>66</td><td>66</td></mdl></td></mdl></td></mdl>	<mdl (1.8)<="" td=""><td><mdl (2.7)<="" td=""><td>66</td><td>66</td></mdl></td></mdl>	<mdl (2.7)<="" td=""><td>66</td><td>66</td></mdl>	66	66
Anthracene	<mdl (1.9)<="" td=""><td><mdl (1.5)<="" td=""><td><mdl (0.49)<="" td=""><td><mdl (0.73)<="" td=""><td>220</td><td>1,200</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (1.5)<="" td=""><td><mdl (0.49)<="" td=""><td><mdl (0.73)<="" td=""><td>220</td><td>1,200</td></mdl></td></mdl></td></mdl>	<mdl (0.49)<="" td=""><td><mdl (0.73)<="" td=""><td>220</td><td>1,200</td></mdl></td></mdl>	<mdl (0.73)<="" td=""><td>220</td><td>1,200</td></mdl>	220	1,200
Fluorene	<mdl (6.3)<="" td=""><td><mdl (4.9)<="" td=""><td><mdl (1.6)<="" td=""><td><mdl (2.4)<="" td=""><td>23</td><td>79</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (4.9)<="" td=""><td><mdl (1.6)<="" td=""><td><mdl (2.4)<="" td=""><td>23</td><td>79</td></mdl></td></mdl></td></mdl>	<mdl (1.6)<="" td=""><td><mdl (2.4)<="" td=""><td>23</td><td>79</td></mdl></td></mdl>	<mdl (2.4)<="" td=""><td>23</td><td>79</td></mdl>	23	79
2-Methylnaphthalene	<mdl (6.8)<="" td=""><td><mdl (5.2)<="" td=""><td><mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>38</td><td>64</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (5.2)<="" td=""><td><mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>38</td><td>64</td></mdl></td></mdl></td></mdl>	<mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>38</td><td>64</td></mdl></td></mdl>	<mdl (2.6)<="" td=""><td>38</td><td>64</td></mdl>	38	64
Naphthalene	<mdl (6.8)<="" td=""><td><mdl (5.2)<="" td=""><td><mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>99</td><td>170</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (5.2)<="" td=""><td><mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>99</td><td>170</td></mdl></td></mdl></td></mdl>	<mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>99</td><td>170</td></mdl></td></mdl>	<mdl (2.6)<="" td=""><td>99</td><td>170</td></mdl>	99	170
Phenanthrene	3.0	<mdl (1.5)<="" td=""><td>1.00</td><td>1.2</td><td>100</td><td>480</td></mdl>	1.00	1.2	100	480
Total LPAH	3.0	<mdl< td=""><td>1.00</td><td>1.2</td><td>370</td><td>780</td></mdl<>	1.00	1.2	370	780
HPAHs						
Benzo(a)anthracene	2.94	0.82	1.59	1.98	110	270
Benzo(a)pyrene	<mdl (1.4)<="" td=""><td><mdl (1.1)<="" td=""><td><mdl (0.36)<="" td=""><td><mdl (0.55)<="" td=""><td>99</td><td>210</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (1.1)<="" td=""><td><mdl (0.36)<="" td=""><td><mdl (0.55)<="" td=""><td>99</td><td>210</td></mdl></td></mdl></td></mdl>	<mdl (0.36)<="" td=""><td><mdl (0.55)<="" td=""><td>99</td><td>210</td></mdl></td></mdl>	<mdl (0.55)<="" td=""><td>99</td><td>210</td></mdl>	99	210
Benzofluoranthenes (Total)	5.9	<mdl (1.1)<="" td=""><td>2.15</td><td>2.6</td><td>230</td><td>450</td></mdl>	2.15	2.6	230	450
Benzo(g,h,i)perylene	<mdl (3.9)<="" td=""><td><mdl (3.0)<="" td=""><td><mdl (0.97)<="" td=""><td><mdl (1.5)<="" td=""><td>31</td><td>78</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (3.0)<="" td=""><td><mdl (0.97)<="" td=""><td><mdl (1.5)<="" td=""><td>31</td><td>78</td></mdl></td></mdl></td></mdl>	<mdl (0.97)<="" td=""><td><mdl (1.5)<="" td=""><td>31</td><td>78</td></mdl></td></mdl>	<mdl (1.5)<="" td=""><td>31</td><td>78</td></mdl>	31	78
Chrysene	2.9	<mdl (1.5)<="" td=""><td>1.10</td><td>0.90</td><td>110</td><td>460</td></mdl>	1.10	0.90	110	460
Dibenzo(a,h)anthracene	<mdl (3.4)<="" td=""><td><mdl (2.6)<="" td=""><td><mdl (0.85)<="" td=""><td><mdl (1.3)<="" td=""><td>12</td><td>33</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (2.6)<="" td=""><td><mdl (0.85)<="" td=""><td><mdl (1.3)<="" td=""><td>12</td><td>33</td></mdl></td></mdl></td></mdl>	<mdl (0.85)<="" td=""><td><mdl (1.3)<="" td=""><td>12</td><td>33</td></mdl></td></mdl>	<mdl (1.3)<="" td=""><td>12</td><td>33</td></mdl>	12	33
Fluoranthene	8.84	<mdl (3.0)<="" td=""><td>3.22</td><td>3.02</td><td>160</td><td>1,200</td></mdl>	3.22	3.02	160	1,200
Indeno(1,2,3-c,d)pyrene	<mdl (4.3)<="" td=""><td><mdl (3.4)<="" td=""><td><mdl (1.1)<="" td=""><td><mdl (1.6)<="" td=""><td>34</td><td>88</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (3.4)<="" td=""><td><mdl (1.1)<="" td=""><td><mdl (1.6)<="" td=""><td>34</td><td>88</td></mdl></td></mdl></td></mdl>	<mdl (1.1)<="" td=""><td><mdl (1.6)<="" td=""><td>34</td><td>88</td></mdl></td></mdl>	<mdl (1.6)<="" td=""><td>34</td><td>88</td></mdl>	34	88
Pyrene	2.1	<mdl (1.5)<="" td=""><td><mdl (0.49)<="" td=""><td><mdl (0.73)<="" td=""><td>1,000</td><td>1,400</td></mdl></td></mdl></td></mdl>	<mdl (0.49)<="" td=""><td><mdl (0.73)<="" td=""><td>1,000</td><td>1,400</td></mdl></td></mdl>	<mdl (0.73)<="" td=""><td>1,000</td><td>1,400</td></mdl>	1,000	1,400
Total HPAH	23	0.82	8.06	8.5	960	5,300
Chlorobenzenes		·				
1,2-Dichlorobenzene	<mdl (0.13)<="" td=""><td><mdl (0.097)<="" td=""><td><mdl (0.032)<="" td=""><td><mdl (0.048)<="" td=""><td>2.3</td><td>2.3</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.097)<="" td=""><td><mdl (0.032)<="" td=""><td><mdl (0.048)<="" td=""><td>2.3</td><td>2.3</td></mdl></td></mdl></td></mdl>	<mdl (0.032)<="" td=""><td><mdl (0.048)<="" td=""><td>2.3</td><td>2.3</td></mdl></td></mdl>	<mdl (0.048)<="" td=""><td>2.3</td><td>2.3</td></mdl>	2.3	2.3
1,4-Dichlorobenzene	<mdl (0.063)<="" td=""><td><mdl (0.049)<="" td=""><td><mul (0.016)<="" td=""><td><mdl (0.024)<="" td=""><td>3.1</td><td>9</td></mdl></td></mul></td></mdl></td></mdl>	<mdl (0.049)<="" td=""><td><mul (0.016)<="" td=""><td><mdl (0.024)<="" td=""><td>3.1</td><td>9</td></mdl></td></mul></td></mdl>	<mul (0.016)<="" td=""><td><mdl (0.024)<="" td=""><td>3.1</td><td>9</td></mdl></td></mul>	<mdl (0.024)<="" td=""><td>3.1</td><td>9</td></mdl>	3.1	9
Hexachlorobenzene	<mdl (0.32)<="" td=""><td><mdl (0.25)<="" td=""><td><mdl (0.080)<="" td=""><td><mdl (0.12)<="" td=""><td>0.38</td><td>2.3</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.25)<="" td=""><td><mdl (0.080)<="" td=""><td><mdl (0.12)<="" td=""><td>0.38</td><td>2.3</td></mdl></td></mdl></td></mdl>	<mdl (0.080)<="" td=""><td><mdl (0.12)<="" td=""><td>0.38</td><td>2.3</td></mdl></td></mdl>	<mdl (0.12)<="" td=""><td>0.38</td><td>2.3</td></mdl>	0.38	2.3
1,2,4-Trichlorobenzene	<mdl (0.13)<="" td=""><td><mdl (0.097)<="" td=""><td><mdl (0.032)<="" td=""><td><mdl (0.048)<="" td=""><td>0.81</td><td>1.8</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.097)<="" td=""><td><mdl (0.032)<="" td=""><td><mdl (0.048)<="" td=""><td>0.81</td><td>1.8</td></mdl></td></mdl></td></mdl>	<mdl (0.032)<="" td=""><td><mdl (0.048)<="" td=""><td>0.81</td><td>1.8</td></mdl></td></mdl>	<mdl (0.048)<="" td=""><td>0.81</td><td>1.8</td></mdl>	0.81	1.8
Phthalates						
Bis(2-ethylhexyl) Phthalate	18.4, B	11.8, B	24.9	36.4	47	78
Butyl Benzyl Phthalate	<mdl (2.9)<="" td=""><td><mdl (2.2)<="" td=""><td>2.24</td><td>3.08</td><td>4.9</td><td>64</td></mdl></td></mdl>	<mdl (2.2)<="" td=""><td>2.24</td><td>3.08</td><td>4.9</td><td>64</td></mdl>	2.24	3.08	4.9	64
Di-N-butyl Phthalate	11.4, B	9.40, B	3.60, B	4.32, B	220	1,700
Di-N-octyl Phthalate	<mdl (3.9)<="" td=""><td><mdl (3.0)<="" td=""><td><mdl (0.97)<="" td=""><td><mdl (1.5)<="" td=""><td>58</td><td>4,500</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (3.0)<="" td=""><td><mdl (0.97)<="" td=""><td><mdl (1.5)<="" td=""><td>58</td><td>4,500</td></mdl></td></mdl></td></mdl>	<mdl (0.97)<="" td=""><td><mdl (1.5)<="" td=""><td>58</td><td>4,500</td></mdl></td></mdl>	<mdl (1.5)<="" td=""><td>58</td><td>4,500</td></mdl>	58	4,500
Diethyl Phthalate	<mdl (2.9)<="" td=""><td><mdl (2.2)<="" td=""><td><mdl (0.73)<="" td=""><td><mdl (1.1)<="" td=""><td>61</td><td>110</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (2.2)<="" td=""><td><mdl (0.73)<="" td=""><td><mdl (1.1)<="" td=""><td>61</td><td>110</td></mdl></td></mdl></td></mdl>	<mdl (0.73)<="" td=""><td><mdl (1.1)<="" td=""><td>61</td><td>110</td></mdl></td></mdl>	<mdl (1.1)<="" td=""><td>61</td><td>110</td></mdl>	61	110
Dimethyl Phthalate	<mdl (5.3)<="" td=""><td><mdl (4.1)<="" td=""><td><mdl (1.3)<="" td=""><td><mdl (2.0)<="" td=""><td>53</td><td>53</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (4.1)<="" td=""><td><mdl (1.3)<="" td=""><td><mdl (2.0)<="" td=""><td>53</td><td>53</td></mdl></td></mdl></td></mdl>	<mdl (1.3)<="" td=""><td><mdl (2.0)<="" td=""><td>53</td><td>53</td></mdl></td></mdl>	<mdl (2.0)<="" td=""><td>53</td><td>53</td></mdl>	53	53
Miscellaneous Compounds				1		
Dibenzofuran	<mdl (6.8)<="" td=""><td><mdl (5.2)<="" td=""><td><mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>15</td><td>58</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (5.2)<="" td=""><td><mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>15</td><td>58</td></mdl></td></mdl></td></mdl>	<mdl (1.7)<="" td=""><td><mdl (2.6)<="" td=""><td>15</td><td>58</td></mdl></td></mdl>	<mdl (2.6)<="" td=""><td>15</td><td>58</td></mdl>	15	58
Hexachlorobutadiene	<mdl (0.36)<="" td=""><td><mdl (0.28)<="" td=""><td><mdl (0.091)<="" td=""><td><mdl (0.14)<="" td=""><td>3.9</td><td>6.2</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.28)<="" td=""><td><mdl (0.091)<="" td=""><td><mdl (0.14)<="" td=""><td>3.9</td><td>6.2</td></mdl></td></mdl></td></mdl>	<mdl (0.091)<="" td=""><td><mdl (0.14)<="" td=""><td>3.9</td><td>6.2</td></mdl></td></mdl>	<mdl (0.14)<="" td=""><td>3.9</td><td>6.2</td></mdl>	3.9	6.2
N-Nitrosodiphenylamine	<mdl (9.7)<="" td=""><td><mdl (7.5)<="" td=""><td><mdl (2.4)<="" td=""><td><mdl (3.7)<="" td=""><td>11</td><td>11</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (7.5)<="" td=""><td><mdl (2.4)<="" td=""><td><mdl (3.7)<="" td=""><td>11</td><td>11</td></mdl></td></mdl></td></mdl>	<mdl (2.4)<="" td=""><td><mdl (3.7)<="" td=""><td>11</td><td>11</td></mdl></td></mdl>	<mdl (3.7)<="" td=""><td>11</td><td>11</td></mdl>	11	11
PCBs						
Total PCBs	注集677/李章	植	2.70	3.3	12	65

Notes

mg/Kg OC - Milligrams per kilogram organic carbon, based on total organic carbon analysis.

<mol>
 Analyte not detected above the method dection limit. Value in parentheses is the numeric MDL.

TOC % - Percent total organic carbon on a dry weight basis, based on total solids analysis.

Shaded Cell with Double Border - Detected concentration exceeds the SQS and/or CSL.

D - Compound detected in laboratory method blank. Sample concentration is loss than 5 times the method blank concentration and should be discounted.

Station NFK503 \cdot TOC < 0.5%, see Table 7 for dry weight-normalized data compared to LAET/2LAET.

Table 7 Sediment Non-Ionic Organic Concentrations (Dry Weight Normalized) Norfolk CSO Sediment Remediation Project **Five-Year Monitoring Program** Year Two - April 2001 Monitoring Data

Concentration (µg/Kg DW) NFK501 NFK502 LAET* 2LAET* NFK501 NFK502 **CSL** Non-Ionic Organics 0 - 2 cm 0 - 10 cm 0 - 2 cm 0 - 10 cm SOS **LPAHS** 500 730 Acenaphthene <MDL (11) <MDL (10) <MDL (11) <MDL (10) 1,300 1,300 Acenaphthylene <MDL (22) <MDL (23) <MDL (22) <MDL (23) 960 4,400 Anthracene 8.0 11 7.3 7.2 Fluorene <MDL (20) <MDL (20) 540 1,000 <MDL (19) <MDL (19) 2-Methylnaphthalene 670 1.400 <MDL (20) <MDL (21) <MDL (21) <MDL (21) 2,400 Naphthalene <MDL (21) 2,100 <MDL (20) <MDL (21) <MDL (21) 1,500 5.400 Phenanthrene 65.3 46.8 39.0 31.6 39 5,200 13,000 Total LPAH 73 58 46 **HPAHS** 1,300 40.8 37.9 38.0 1,600 Benzo(a)anthracene 60.4 92.6 61.4 56.8 24.5 1,600 3,000 Benzo(a)pyrene Benzofluoranthenes (Total) 198 174 128 118 3,200 3,600 24.8 670 720 Benzo(q,h,i)perylene 18 <MDL (12) <MDL (12) 1,400 2.800 Chrysene 81.9 62.1 49.0 42.0 Dibenzo(a,h)anthracene <MDI (11) 230 540 <MDL (10) <MDL (11) <MDL (10) 162 124 110 100 1.700 2.500 Fluoranthene 600 690 Indeno(1,2,3-c,d)pyrene 33.6 21 22 <MDL (14) 2,600 3,300 Pvrene 125 95.7 79.1 50.7 Total HPAH 778 600 480 373 12,000 17,000 Chlorobenzenes 35 50 1,2-Dichlorobenzene <MDL (0.39) <MDL (0.39) <MDL (0.38) <MDL (0.40) 110 120 1,4-Dichlorobenzene <MDL (0.19) <MDL (0.19) <MDL (0.20) <MDL (0.20) 22 70 Hexachlorobenzene <MDL (0.96) <MDL (1.0) <MDL (0.98) <MDL (0.99) 51 31 1,2,4-Trichlorobenzene <MDL (0.38) <MDL (0.40) <MDL (0.39) <MDL (0.39) Phthalates 1,300 1,900 349 246 206 192 Bis(2-ethylhexyl) Phthalate **Butyl Benzyl Phthalate** 29.6 22.1 25.1 63 470 57.5 30.5, B 1,400 5,100 Di-N-butyl Phthalate 46.9, B 43.6, B 32.6, B 420 2,100 Di-N-octyl Phthalate <MDL (12) <MDL (12) <MDL (12) <MDL (12) 48 73 Diethyl Phthalate <MDL (8.8) <MDL (9.2) <MDL (8.9) <MDL (9.0) 71 160 Dimethyl Phthalate <MDL (16) <MDL (17) <MDL (16) <MDL (17) Miscellaneous Compounds 700 Dibenzofuran 540 <MDL (20) <MDL (21) <MDL (21) <MDL (21) Hexachlorobutadiene 11 120 <MDL (1.1) <MDL (1.1) <MDL (1.1) <MDL (1.1) N-Nitrosodiphenylamine 28 40 <MDL (30) <MDL (29) <MDL (31) <MDL (30) **PCBs** 1,000

Notes

Total PCBs

μg/Kg DW - Micrograms per kilogram dry weight, based on percent solids analysis.

35.5

<MDL (#) - Analyte not detected above the method dection limit. Value in parentheses is the numeric MDL.

161

Shaded Cell - MDL exceeds the LAET and/or 2LAET.

60.9

Shaded Cell with Double Border - Detected concentration exceeds the LAET and/or 2LAET.

B - Compound detected in laboratory method blank. Sample concentration is less than 5 times the method blank concentration and should be discounted

94.1

130

LAET/2LAET equivalent to SQS/CSL criteria, respectively.

Table 7 (cont.) Sediment Non-Ionic Organic Concentrations (Dry Weight Normalized) Norfolk CSO Sediment Remediation Project Five-Year Monitoring Program April 2001 Monitoring Data

	C	oncentration	ı (μg/Kg DV	V)		
	NFK503	NFK503	NFK504	NFK504		
Non-Ionic Organics	0 - 2 cm	0 - 10 cm	0 - 2 cm	0 - 10 cm	LAET	2LAET
LPAHs	"					
Acenaphthene	<mdl (9.4)<="" td=""><td><mdl (9.4)<="" td=""><td><mdl (13)<="" td=""><td><mdl (12)<="" td=""><td>500</td><td>730</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (9.4)<="" td=""><td><mdl (13)<="" td=""><td><mdl (12)<="" td=""><td>500</td><td>730</td></mdl></td></mdl></td></mdl>	<mdl (13)<="" td=""><td><mdl (12)<="" td=""><td>500</td><td>730</td></mdl></td></mdl>	<mdl (12)<="" td=""><td>500</td><td>730</td></mdl>	500	730
Acenaphthylene	<mdl (20)<="" td=""><td><mdl (20)<="" td=""><td><mdl (28)<="" td=""><td><mdl (25)<="" td=""><td>1,300</td><td>1,300</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (20)<="" td=""><td><mdl (28)<="" td=""><td><mdl (25)<="" td=""><td>1,300</td><td>1,300</td></mdl></td></mdl></td></mdl>	<mdl (28)<="" td=""><td><mdl (25)<="" td=""><td>1,300</td><td>1,300</td></mdl></td></mdl>	<mdl (25)<="" td=""><td>1,300</td><td>1,300</td></mdl>	1,300	1,300
Anthracene	<mdl (5.4)<="" td=""><td><mdl (5.4)<="" td=""><td><mdl (7.6)<="" td=""><td><mdl (6.7)<="" td=""><td>960</td><td>4,400</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (5.4)<="" td=""><td><mdl (7.6)<="" td=""><td><mdl (6.7)<="" td=""><td>960</td><td>4,400</td></mdl></td></mdl></td></mdl>	<mdl (7.6)<="" td=""><td><mdl (6.7)<="" td=""><td>960</td><td>4,400</td></mdl></td></mdl>	<mdl (6.7)<="" td=""><td>960</td><td>4,400</td></mdl>	960	4,400
Fluorene	<mdl (17)<="" td=""><td><mdl (18)<="" td=""><td><mdl (25)<="" td=""><td><mdl (22)<="" td=""><td>540</td><td>1,000</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (18)<="" td=""><td><mdl (25)<="" td=""><td><mdl (22)<="" td=""><td>540</td><td>1,000</td></mdl></td></mdl></td></mdl>	<mdl (25)<="" td=""><td><mdl (22)<="" td=""><td>540</td><td>1,000</td></mdl></td></mdl>	<mdl (22)<="" td=""><td>540</td><td>1,000</td></mdl>	540	1,000
2-Methylnaphthalene	<mdl (19)<="" td=""><td><mdl (19)<="" td=""><td><mdl (27)<="" td=""><td><mdl (23)<="" td=""><td>670</td><td>1,400</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (19)<="" td=""><td><mdl (27)<="" td=""><td><mdl (23)<="" td=""><td>670</td><td>1,400</td></mdl></td></mdl></td></mdl>	<mdl (27)<="" td=""><td><mdl (23)<="" td=""><td>670</td><td>1,400</td></mdl></td></mdl>	<mdl (23)<="" td=""><td>670</td><td>1,400</td></mdl>	670	1,400
Naphthalene	< MDL (19)	< MDL (19)	<mdl (27)<="" td=""><td><mdl (23)<="" td=""><td>2,100</td><td>2,400</td></mdl></td></mdl>	<mdl (23)<="" td=""><td>2,100</td><td>2,400</td></mdl>	2,100	2,400
Phenanthrene	8.4	<mdl (5.4)<="" td=""><td>15.6</td><td>10</td><td>1,500</td><td>5,400</td></mdl>	15.6	10	1,500	5,400
Total LPAH	8.4	<mdl< td=""><td>15.6</td><td>10</td><td>5,200</td><td>13,000</td></mdl<>	15.6	10	5,200	13,000
HPAHS						
Benzo(a)anthracene	8.14	3.0	24.9	18.0	1,300	1,600
Benzo(a)pyrene	<mdl (4.0)<="" td=""><td><mdl (4.0)<="" td=""><td><mdl (5.7)<="" td=""><td><mdl (5.0)<="" td=""><td>1,600</td><td>3,000</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (4.0)<="" td=""><td><mdl (5.7)<="" td=""><td><mdl (5.0)<="" td=""><td>1,600</td><td>3,000</td></mdl></td></mdl></td></mdl>	<mdl (5.7)<="" td=""><td><mdl (5.0)<="" td=""><td>1,600</td><td>3,000</td></mdl></td></mdl>	<mdl (5.0)<="" td=""><td>1,600</td><td>3,000</td></mdl>	1,600	3,000
Benzofluoranthenes (Total)	16	<mdl (4.0)<="" td=""><td>33.6</td><td>25</td><td>3,200</td><td>3,600</td></mdl>	33.6	25	3,200	3,600
Benzo(g,h,i)perylene	<mdl (11)<="" td=""><td><mdl (11)<="" td=""><td><mdl (15)<="" td=""><td><mdl (13)<="" td=""><td>670</td><td>720</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (11)<="" td=""><td><mdl (15)<="" td=""><td><mdl (13)<="" td=""><td>670</td><td>720</td></mdl></td></mdl></td></mdl>	<mdl (15)<="" td=""><td><mdl (13)<="" td=""><td>670</td><td>720</td></mdl></td></mdl>	<mdl (13)<="" td=""><td>670</td><td>720</td></mdl>	670	720
Chrysene	7.9	<mdl (5.4)<="" td=""><td>17.2</td><td>8.2</td><td>1,400</td><td>2,800</td></mdl>	17.2	8.2	1,400	2,800
Dibenzo(a,h)anthracene	<mdl (9.4)<="" td=""><td>≺MDL (9.4)</td><td><mdl (13)<="" td=""><td><mdl (12)<="" td=""><td>230</td><td>540</td></mdl></td></mdl></td></mdl>	≺MDL (9.4)	<mdl (13)<="" td=""><td><mdl (12)<="" td=""><td>230</td><td>540</td></mdl></td></mdl>	<mdl (12)<="" td=""><td>230</td><td>540</td></mdl>	230	540
Fluoranthene	24.5	<mdl (11)<="" td=""><td>50.3</td><td>27.5</td><td>1,700</td><td>2,500</td></mdl>	50.3	27.5	1,700	2,500
Indeno(1,2,3-c,d)pyrene	<mdl (12)<="" td=""><td><mdl (12)<="" td=""><td><mdl (17)<="" td=""><td><mdl (15)<="" td=""><td>600</td><td>690</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (12)<="" td=""><td><mdl (17)<="" td=""><td><mdl (15)<="" td=""><td>600</td><td>690</td></mdl></td></mdl></td></mdl>	<mdl (17)<="" td=""><td><mdl (15)<="" td=""><td>600</td><td>690</td></mdl></td></mdl>	<mdl (15)<="" td=""><td>600</td><td>690</td></mdl>	600	690
Pyrene	5.9	<mdl (5.4)<="" td=""><td><mdl (7.6)<="" td=""><td><mdl (6.7)<="" td=""><td>2,600</td><td>3,300</td></mdl></td></mdl></td></mdl>	<mdl (7.6)<="" td=""><td><mdl (6.7)<="" td=""><td>2,600</td><td>3,300</td></mdl></td></mdl>	<mdl (6.7)<="" td=""><td>2,600</td><td>3,300</td></mdl>	2,600	3,300
Total HPAH	62	3.0	126	79	12,000	17,000
Chlorobenzenes						
1,2-Dichlorobenzene	<mdl (0.35)<="" td=""><td><mdl (0.35)<="" td=""><td><mdl (0.49)<="" td=""><td><mdl (0.43)<="" td=""><td>35</td><td>50</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.35)<="" td=""><td><mdl (0.49)<="" td=""><td><mdl (0.43)<="" td=""><td>35</td><td>50</td></mdl></td></mdl></td></mdl>	<mdl (0.49)<="" td=""><td><mdl (0.43)<="" td=""><td>35</td><td>50</td></mdl></td></mdl>	<mdl (0.43)<="" td=""><td>35</td><td>50</td></mdl>	35	50
1,4-Dichlorobenzene	<mdl (0.17)<="" td=""><td><mdl (0.18)<="" td=""><td><mdl (0.25)<="" td=""><td><mdl (0.22)<="" td=""><td>110</td><td>120</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.18)<="" td=""><td><mdl (0.25)<="" td=""><td><mdl (0.22)<="" td=""><td>110</td><td>120</td></mdl></td></mdl></td></mdl>	<mdl (0.25)<="" td=""><td><mdl (0.22)<="" td=""><td>110</td><td>120</td></mdl></td></mdl>	<mdl (0.22)<="" td=""><td>110</td><td>120</td></mdl>	110	120
Hexachlorobenzene	<mdl (0.88)<="" td=""><td><mdl (0.89)<="" td=""><td>(MDL (1.3)</td><td><mdl (1.1)<="" td=""><td>22</td><td>70</td></mdl></td></mdl></td></mdl>	<mdl (0.89)<="" td=""><td>(MDL (1.3)</td><td><mdl (1.1)<="" td=""><td>22</td><td>70</td></mdl></td></mdl>	(MDL (1.3)	<mdl (1.1)<="" td=""><td>22</td><td>70</td></mdl>	22	70
1,2,4-Trichlorobenzene	<mdl (0.35)<="" td=""><td><mdl (0.35)<="" td=""><td><mdl (0.49)<="" td=""><td><mdl (0.43)<="" td=""><td>31</td><td>51</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (0.35)<="" td=""><td><mdl (0.49)<="" td=""><td><mdl (0.43)<="" td=""><td>31</td><td>51</td></mdl></td></mdl></td></mdl>	<mdl (0.49)<="" td=""><td><mdl (0.43)<="" td=""><td>31</td><td>51</td></mdl></td></mdl>	<mdl (0.43)<="" td=""><td>31</td><td>51</td></mdl>	31	51
Phthalates						
Bis(2-ethylhexyl) Phthalate	51.0, B	42.4, B	389	331	1,300	1,900
Butyl Benzyl Phthalate	<mdl (8.0)<="" td=""><td><mdl (8.1)<="" td=""><td>34.9</td><td>28.0</td><td>63</td><td>470</td></mdl></td></mdl>	<mdl (8.1)<="" td=""><td>34.9</td><td>28.0</td><td>63</td><td>470</td></mdl>	34.9	28.0	63	470
Di-N-butyl Phthalate	31.6, B	33.9, B	56.2, B	39.3, B	1, 4 00	5,100
Di-N-octyl Phthalate	<mdl (11)<="" td=""><td><mdl (11)<="" td=""><td><mdl (15)<="" td=""><td><mdl (13)<="" td=""><td>420</td><td>2,100</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (11)<="" td=""><td><mdl (15)<="" td=""><td><mdl (13)<="" td=""><td>420</td><td>2,100</td></mdl></td></mdl></td></mdl>	<mdl (15)<="" td=""><td><mdl (13)<="" td=""><td>420</td><td>2,100</td></mdl></td></mdl>	<mdl (13)<="" td=""><td>420</td><td>2,100</td></mdl>	420	2,100
Diethyl Phthalate	<mdl (8.0)<="" td=""><td><mdl (8.1)<="" td=""><td><mdl (11)<="" td=""><td><mdl (10)<="" td=""><td>48</td><td>73</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (8.1)<="" td=""><td><mdl (11)<="" td=""><td><mdl (10)<="" td=""><td>48</td><td>73</td></mdl></td></mdl></td></mdl>	<mdl (11)<="" td=""><td><mdl (10)<="" td=""><td>48</td><td>73</td></mdl></td></mdl>	<mdl (10)<="" td=""><td>48</td><td>73</td></mdl>	48	73
Dimethyl Phthalate	<mdl (15)<="" td=""><td><mdl (15)<="" td=""><td><mdl (21)<="" td=""><td><mdl (18)<="" td=""><td>71</td><td>160</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (15)<="" td=""><td><mdl (21)<="" td=""><td><mdl (18)<="" td=""><td>71</td><td>160</td></mdl></td></mdl></td></mdl>	<mdl (21)<="" td=""><td><mdl (18)<="" td=""><td>71</td><td>160</td></mdl></td></mdl>	<mdl (18)<="" td=""><td>71</td><td>160</td></mdl>	71	160
Miscellaneous Compounds						
Dibenzofuran	<mdl (19)<="" td=""><td><mdl (19)<="" td=""><td><mdl (27)<="" td=""><td><mdl (23)<="" td=""><td>540</td><td>700</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (19)<="" td=""><td><mdl (27)<="" td=""><td><mdl (23)<="" td=""><td>540</td><td>700</td></mdl></td></mdl></td></mdl>	<mdl (27)<="" td=""><td><mdl (23)<="" td=""><td>540</td><td>700</td></mdl></td></mdl>	<mdl (23)<="" td=""><td>540</td><td>700</td></mdl>	540	700
Hexachlorobutadiene	<mdi (1.0)<="" td=""><td><mdi (1.0)<="" td=""><td><mdi (14)<="" td=""><td><mdi (1.2)<="" td=""><td>11</td><td>120</td></mdi></td></mdi></td></mdi></td></mdi>	<mdi (1.0)<="" td=""><td><mdi (14)<="" td=""><td><mdi (1.2)<="" td=""><td>11</td><td>120</td></mdi></td></mdi></td></mdi>	<mdi (14)<="" td=""><td><mdi (1.2)<="" td=""><td>11</td><td>120</td></mdi></td></mdi>	<mdi (1.2)<="" td=""><td>11</td><td>120</td></mdi>	11	120
N-Nitrosodiphenylamine	<mdl (27)<="" td=""><td><mdl (27)<="" td=""><td><mdl (38)<="" td=""><td><mdl (33)<="" td=""><td>28</td><td>40</td></mdl></td></mdl></td></mdl></td></mdl>	<mdl (27)<="" td=""><td><mdl (38)<="" td=""><td><mdl (33)<="" td=""><td>28</td><td>40</td></mdl></td></mdl></td></mdl>	<mdl (38)<="" td=""><td><mdl (33)<="" td=""><td>28</td><td>40</td></mdl></td></mdl>	<mdl (33)<="" td=""><td>28</td><td>40</td></mdl>	28	40
PCBs						
Total PCBs	1,880	1,330	42.2	31	130	1,000

Notes

μg/Kg DW - Micrograms per kilogram dry weight, based on percent solids analysis.

<MDL (#) - Analyte not detected above the method dection limit. Value in parentheses is the numeric MDL.

Shaded Cell - MDL exceeds the LAET and/or 2LAET.

Shaded Cell with Double Border - Detected concentration exceeds the LAET and/or 2LAET.

B - Compound detected in laboratory method blank. Sample concentration is less than 5 times the method blank concentration and should be discounted.

^{* -} LAET/2LAET equivalent to SQS/CSL criteria, respectively.

Dry Weight Comparison of Detected Sediment Constituents (0 - 10 cm Depth Stratum)
April 1994, October 1999, April 2000, and April 2001 Monitoring Events
Norfolk C5O Sediment Remediation Project
Five-Year Monitoring Program (Year Two)

	Non	Norfolk CSO Channel (NFK	annel (NFK5	(201)	Combi	Combined Channel Delta (NFK502)	I Delta (NFI	(502)	Boeing S	torm Drain	Boeing Storm Drain Channel (NFK503)	FK503)	Upr	iver Refere	Upriver Reference (NFK504)	₽
Constituent	Apr-99	0ct-99	Apr-30	Apr-01	Apr-99	Oct-99	Apr-00	Apr-01	Apr-99	Oct-99	Apr-00	Apr-01	Apr-99	Oct-99	Apr-00	Apr-01
Total Organic Carbon (mg/Kg dry weight)	1,760	3,240	2,350	8,67(1,210	3,730	1,440	4,990	3,180	3,070	2,010	3600	1,260	1,890	3,090	9,080
Grain Size (% wet weight)																
Gravel	0.8	0.1	0.3	1.5	0.4	0.5	1.1	0	9.4	1.1	0.8	1.0	04	6.0	9.0	0.5
Sand	98.6	92.6	£.3	78.8	95.5	6.68	92.6	90.7	9. 5.3	92.5	96.1	97.0	7:36	96.4	0.06	65.4
Silt	1.0	3.4	2.4	16.6	4.7	9.3	5.8	6.8	5.4	6.2	3.5	1.5	29	1.8	9.1	27.7
Clay	0	0.7	0.1	3.7	0	0.9	0	2.4	0	0.7	0	0.6	^	0.7	0.1	9.9
Metals (mg/Kg dry weigh:)							:			ļ !						
Arsenic	< MDL (3.3)	3.5	4.	· MDI (38)	3.7	3.5	4.6	<mdl (3.6)<="" td=""><td><mdl (3.2)<="" td=""><td>4.3 E.3</td><td>4.4</td><td><mol (3.2)<="" td=""><td>35</td><td>5.1</td><td>6.0</td><td>< MDI (0 42)</td></mol></td></mdl></td></mdl>	<mdl (3.2)<="" td=""><td>4.3 E.3</td><td>4.4</td><td><mol (3.2)<="" td=""><td>35</td><td>5.1</td><td>6.0</td><td>< MDI (0 42)</td></mol></td></mdl>	4.3 E.3	4.4	<mol (3.2)<="" td=""><td>35</td><td>5.1</td><td>6.0</td><td>< MDI (0 42)</td></mol>	35	5.1	6.0	< MDI (0 42)
Cadmium	0.20	· MDI (0 20)	(171) MDI (171)	(£20) KUM >	0.21	(61 0) TOM >	< MDI. (0.20)	< MOL (0.23)	«MDI. (0.19)	+ MDL (0 21)	< 40L (0.21)	< MUL (0.20)	021	< MDL (0.19)	< MDL (020)	< MDI (0.25)
Chromium	12.9	17.1	14.1	17.4	13.0	13.9	12.5	13.3	14.7	14.1	12.2	2.0	11.2	16.4	14.0	17.8
Copper	11.4	13.4	12.9	18.5	12.2	13.8	11.2	13.1	10.5	14.5	11.2	12.9	12	13.7	15.1	18.8
Lead	4.2	5.2	5.7	7.36	5.0	5.7	5.4	7.83	4.4	5.5	6.5	8.0	46	5.5	6.7	13.8
Mercury	0.055	< MDL (0.027)	< MDL (0.026)	0.043	0.089	0.043	< MUL (0.027)	< MDL (0.030)	0.066	0.052	< NDL (0.028)	0.10	0.072	< MDL ().026)	· MDL (0.)27.)	0.038
Zinc	46.0	51.3	43.7	29.0	43.2	52.5	46.8	46.5	42.1	53.7	44.5	46.4	44.2	52.9	46.8	9.09
Organics (µg/Kg dry weight)																
Anthracene	<mdl (21)<="" td=""><td>< MDL (21)</td><td>< MDL (22)</td><td></td><td><mdl (21)<="" td=""><td>< MDL (22)</td><td><mdl (22)<="" td=""><td>7.2</td><td><mdl (21)<="" td=""><td><m5l (22)<="" td=""><td>(22) MDI</td><td>· WH (5.4)</td><td><md (21)<="" td=""><td>· MDI (22)</td><td><mdl (11)<="" td=""><td>< MDL (6.7)</td></mdl></td></md></td></m5l></td></mdl></td></mdl></td></mdl></td></mdl>	< MDL (21)	< MDL (22)		<mdl (21)<="" td=""><td>< MDL (22)</td><td><mdl (22)<="" td=""><td>7.2</td><td><mdl (21)<="" td=""><td><m5l (22)<="" td=""><td>(22) MDI</td><td>· WH (5.4)</td><td><md (21)<="" td=""><td>· MDI (22)</td><td><mdl (11)<="" td=""><td>< MDL (6.7)</td></mdl></td></md></td></m5l></td></mdl></td></mdl></td></mdl>	< MDL (22)	<mdl (22)<="" td=""><td>7.2</td><td><mdl (21)<="" td=""><td><m5l (22)<="" td=""><td>(22) MDI</td><td>· WH (5.4)</td><td><md (21)<="" td=""><td>· MDI (22)</td><td><mdl (11)<="" td=""><td>< MDL (6.7)</td></mdl></td></md></td></m5l></td></mdl></td></mdl>	7.2	<mdl (21)<="" td=""><td><m5l (22)<="" td=""><td>(22) MDI</td><td>· WH (5.4)</td><td><md (21)<="" td=""><td>· MDI (22)</td><td><mdl (11)<="" td=""><td>< MDL (6.7)</td></mdl></td></md></td></m5l></td></mdl>	<m5l (22)<="" td=""><td>(22) MDI</td><td>· WH (5.4)</td><td><md (21)<="" td=""><td>· MDI (22)</td><td><mdl (11)<="" td=""><td>< MDL (6.7)</td></mdl></td></md></td></m5l>	(22) MDI	· WH (5.4)	<md (21)<="" td=""><td>· MDI (22)</td><td><mdl (11)<="" td=""><td>< MDL (6.7)</td></mdl></td></md>	· MDI (22)	<mdl (11)<="" td=""><td>< MDL (6.7)</td></mdl>	< MDL (6.7)
Benzo(a)anthracene	ADI (71)	< MD (71)	< MDR 22)	40.8	(71) KM >	78	< MDI (72)	38.0	· MD. (21)	28	< MDI (22)	3.0	< MIL (21)	→ MDI (22)	< MDL (31)	18.0
Benzo(a)pyrene	<mdl (35)<="" td=""><td>-MDI (36)</td><td>< MDL (37)</td><td>61.4</td><td>«MOL (35</td><td>< MUL (38)</td><td><mdl (37)<="" td=""><td>24.5</td><td>< MUL (35)</td><td>< MUL (37)</td><td>MDL (37)</td><td>· MOL (4 0)</td><td>< MD, (35)</td><td>< MDL (37)</td><td>(9;) KJW ></td><td>< MDI (5.0)</td></mdl></td></mdl>	-MDI (36)	< MDL (37)	61.4	«MOL (35	< MUL (38)	<mdl (37)<="" td=""><td>24.5</td><td>< MUL (35)</td><td>< MUL (37)</td><td>MDL (37)</td><td>· MOL (4 0)</td><td>< MD, (35)</td><td>< MDL (37)</td><td>(9;) KJW ></td><td>< MDI (5.0)</td></mdl>	24.5	< MUL (35)	< MUL (37)	MDL (37)	· MOL (4 0)	< MD, (35)	< MDL (37)	(9;) KJW >	< MDI (5.0)
Benzofluoranthenes (total)	<mol (56)<="" td=""><td>< MOL (58)</td><td>< MDL 159)</td><td>174</td><td>· MDL (56</td><td>< MDI (60)</td><td><mdt (58)<="" td=""><td>118</td><td>< MDL (56)</td><td><mdl (59)<="" td=""><td>(65) IDM></td><td>· MOL (4 0)</td><td><md. (56)<="" td=""><td>- MDL (58)</td><td>< MDL (77)</td><td>< MDL (25)</td></md.></td></mdl></td></mdt></td></mol>	< MOL (58)	< MDL 159)	174	· MDL (56	< MDI (60)	<mdt (58)<="" td=""><td>118</td><td>< MDL (56)</td><td><mdl (59)<="" td=""><td>(65) IDM></td><td>· MOL (4 0)</td><td><md. (56)<="" td=""><td>- MDL (58)</td><td>< MDL (77)</td><td>< MDL (25)</td></md.></td></mdl></td></mdt>	118	< MDL (56)	<mdl (59)<="" td=""><td>(65) IDM></td><td>· MOL (4 0)</td><td><md. (56)<="" td=""><td>- MDL (58)</td><td>< MDL (77)</td><td>< MDL (25)</td></md.></td></mdl>	(65) IDM>	· MOL (4 0)	<md. (56)<="" td=""><td>- MDL (58)</td><td>< MDL (77)</td><td>< MDL (25)</td></md.>	- MDL (58)	< MDL (77)	< MDL (25)
Benzo(g, h, ilperylene	· MDI (35)	(3E) IOM .	(78 JQM →	18	75.7	< MDI (38)	< MDI (37)	<mdl (12)<="" td=""><td>70.5</td><td>· MDL (37)</td><td>< MOL (37)</td><td>· MOL (11)</td><td>< M() (35)</td><td>· MDI (37)</td><td>(9:) ION ></td><td>· MDI (13)</td></mdl>	70.5	· MDL (37)	< MOL (37)	· MOL (11)	< M() (35)	· MDI (37)	(9:) ION >	· MDI (13)
Benzoic Acid	· MDL (140)	< MDL (150)	210	122	· MUL (140)	< MUL (150)	150	152	< MDL (140)	< MDL (150)	< 4Dt (150)	9.79	< MD. (140)	< MDL 150)	150	168
Bis(2-ethyllexyl) Phthalate	·MDL (21)	· MDL (360)**	**(0K) IQM>	246	< MDL (21)	<mdf (360)**<="" td=""><td>< MDL (240)**</td><td>192</td><td><mdl (21)<="" td=""><td><mdl (360)**<="" td=""><td>**(054) VM ></td><td>· ••(£Z) 13M ></td><td><md (21)<="" td=""><td>**(08') MDI -</td><td>**(I#Z) TWI></td><td>331</td></md></td></mdl></td></mdl></td></mdf>	< MDL (240)**	192	<mdl (21)<="" td=""><td><mdl (360)**<="" td=""><td>**(054) VM ></td><td>· ••(£Z) 13M ></td><td><md (21)<="" td=""><td>**(08') MDI -</td><td>**(I#Z) TWI></td><td>331</td></md></td></mdl></td></mdl>	<mdl (360)**<="" td=""><td>**(054) VM ></td><td>· ••(£Z) 13M ></td><td><md (21)<="" td=""><td>**(08') MDI -</td><td>**(I#Z) TWI></td><td>331</td></md></td></mdl>	**(054) VM >	· ••(£Z) 13M >	<md (21)<="" td=""><td>**(08') MDI -</td><td>**(I#Z) TWI></td><td>331</td></md>	**(08') MDI -	**(I#Z) TWI>	331
Butyl Benzy Phthalate	(12) MM	(MDI (21)	< MCI (22)	57.5	< MDL (21;	<mdl (22)<="" td=""><td><mdl (22)<="" td=""><td>25.1</td><td>< MDL (21)</td><td>< MDL (22)</td><td>-MDL (22)</td><td>~ M)L (8.1)</td><td>·MD. (21)</td><td>< MDL(22)</td><td>< MDL (31)</td><td>28.0</td></mdl></td></mdl>	<mdl (22)<="" td=""><td>25.1</td><td>< MDL (21)</td><td>< MDL (22)</td><td>-MDL (22)</td><td>~ M)L (8.1)</td><td>·MD. (21)</td><td>< MDL(22)</td><td>< MDL (31)</td><td>28.0</td></mdl>	25.1	< MDL (21)	< MDL (22)	-MDL (22)	~ M)L (8.1)	·MD. (21)	< MDL(22)	< MDL (31)	28.0
Chrysene	< MDL (21)	< MDL (21)	MDL 22)	62.1	< MDL (21	29	< MDt (22)	42.0	< MDL (21)	43	< MDL (22)	· W)((5.4)	· MG (21)	< MDL(22)	35	8.2
Fluoranthere	< MOL (21)	32	56	124	< MOL (21)	26.7	< MDI (22)	81	< MDL (21)	6.99	56	· MO4 (11)	< MR (21)	< MDI (22)	63.6	27.5
Indcno(1,2,3 c,d)pyrene	(35)	<mdi (36)<="" th=""><th>< MOL G?)</th><th>21</th><th>< MDL (35)</th><th><mdl (38)<="" th=""><th><mdl (3.1)<="" th=""><th><mdl (14)<="" th=""><th>< MDL (35)</th><th>< MDL (37)</th><th>-MDL (34)</th><th>«MCL (12)</th><th>< MU. (35)</th><th>< MDL(37)</th><th><mul (3)<="" th=""><th>· MUL (15)</th></mul></th></mdl></th></mdl></th></mdl></th></mdi>	< MOL G?)	21	< MDL (35)	<mdl (38)<="" th=""><th><mdl (3.1)<="" th=""><th><mdl (14)<="" th=""><th>< MDL (35)</th><th>< MDL (37)</th><th>-MDL (34)</th><th>«MCL (12)</th><th>< MU. (35)</th><th>< MDL(37)</th><th><mul (3)<="" th=""><th>· MUL (15)</th></mul></th></mdl></th></mdl></th></mdl>	<mdl (3.1)<="" th=""><th><mdl (14)<="" th=""><th>< MDL (35)</th><th>< MDL (37)</th><th>-MDL (34)</th><th>«MCL (12)</th><th>< MU. (35)</th><th>< MDL(37)</th><th><mul (3)<="" th=""><th>· MUL (15)</th></mul></th></mdl></th></mdl>	<mdl (14)<="" th=""><th>< MDL (35)</th><th>< MDL (37)</th><th>-MDL (34)</th><th>«MCL (12)</th><th>< MU. (35)</th><th>< MDL(37)</th><th><mul (3)<="" th=""><th>· MUL (15)</th></mul></th></mdl>	< MDL (35)	< MDL (37)	-MDL (34)	«MCL (12)	< MU. (35)	< MDL(37)	<mul (3)<="" th=""><th>· MUL (15)</th></mul>	· MUL (15)
Phenanthrene	21	× MDL (21)	< MDL 22)	46.8	< MDI (21	59	< MDL (22)	31.6	< MDL (21)	40.3	<mdi (22)<="" td=""><td>< MX (5.4)</td><td>< MIL 121)</td><td>· MDI (22)</td><td>< MDL (33)</td><td>10</td></mdi>	< MX (5.4)	< MIL 121)	· MDI (22)	< MDL (33)	10
Pyrene	< MDL (21)	59	< MDL 22)	95.7	15) IQM >	47.9	< MDL (72)	50.7	< MDL (23)	64.6	< MDL (22)	· MN (5.4)	< MIT (21)	< MOI (22)	47.9	(2.9) TOM >
Total PCBs	< MOI (22)	50.9	< MCL 58)	35.5	< MDI (22)	71.6	10	94.1	< MΩ((22)	182	179	1,330	< Mil. (22)	· MDL(5.2)	13.2	31

Notes

rig/Kg dry weight - Milligrams per kilogram normalized to dn weight based or percent suids aralysis

ug/Kg dry weight - Micrograms per kilogram normalized to cry weight based on certent solidsanalysis.

< MDL (#) Analyte not detected above the *method steration limit*. Jeue in rarentheses is the numer < MDL.

** MDL issed to 5 X the concentration of bs/2-ettyllierp/joithalate detected in the method blurk.

Table 9
Dry Weight Comparison of Detected Sediment Constituents (0 - 2 cm Depth Stratum)
October 1999, April 2000, and April 2001 Monitoring Events
Norfolk CSO Sediment Remediation Project
Five-Year Monitoring Program (Year Two)

Agr-Ob		Rorfolk	Rorfolk CSO Channel (innel (NFK501)	Combined	Combined Channel Delta (NFK502)	(NFK502)	Boeing Stori	Boeing Sorm Drtain Channel (NFK503)	el (NFK503)	Upriver	Upriver Reference (NFK504)	KS04)
et weight) 4,170 5,530 6,180 7,030 3,390 6,510 6,490 4,930 2,770 5,510 et weight) 0,5 0,1 0,2 0,6 0,6 0,6 0,6 0,9 1,3 0,5 1,1 1,7 et weight) 0,5 0,1 0,6	Constituent	Oct-99	Apr-00	Apr-01	Oct-99	Apr-00	Apr-01	Oct-99	Apr-00	Apr-01	66- 1 0	Apr-00	Apr-01
wet weight) 0.5 0.1 0.6 <th< th=""><th>Total Organic Carbon (mg/Kg dry weight)</th><th>4,170</th><th>5,530</th><th>8,180</th><th>7,030</th><th>3,390</th><th>6,510</th><th>6,490</th><th>4,930</th><th>2,770</th><th>5,510</th><th>2,900</th><th>15,600</th></th<>	Total Organic Carbon (mg/Kg dry weight)	4,170	5,530	8,180	7,030	3,390	6,510	6,490	4,930	2,770	5,510	2,900	15,600
910 911 912 915 915 916 918 919	Grain Size (% wet weight)										1		
910 813 6 815 815 815 815 817 918 917 908 917 959 813 813 815 814 9 917 918 917 918 918 918 918 918 918 918 918 918 918		0.5	0.1	0.2	9.0	0.8	0	1.3	0.5	1.0	1.7	1.0	0.5
6.8 14.8 14.5 13.2 12.7 7.7 5.8 5.9 2.4 13.6 1.5		91.0	83.6	81.5	83.6	86.9	89.1	8.06	93.7	95.9	82.3	74.1	80.7
dry weight) 4.5 5.1 and (a) 6.2 5.3 and (a) 4.0 5.0 not. 3.0 5.0 dry weight) 4.5 5.1 and (a) 6.2 5.3 and (a) 4.0 5.0 and (a) 6.3 156 17.1 16.1 14.7 15.2 16.7 15.4 13.9 13.9 13.2 156 17.1 17.2 18.6 13.3 16.5 7.5 13.9 13.9 13.2 6.2 5.4 11.6 9.0 17.0 9.39 6.3 6.5 7.5 7.5 13.9 13.9 13.2 6.0 6.2 6.4 11.6 9.0 0.042 0.053 0.029 0.028 and (a) 17.1 13.4 17.1 13.4 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.0 18.2 17.1 17.1 18	詩	6.3	14.8	14.5	13.2	12.7	7.7	8.9	5.9	5.6	13.6	23.8	14.4
dry weight) 45 5.1 ani (16) 6.2 5.3 enn (16) 4.0 5.0 enn (3) 6.3 156 156 17.1 16.1 14.7 15.2 16.7 15.4 13.0 139 13.2 156 17.1 16.1 16.1 14.7 15.2 16.7 15.4 13.0 13.9 13.2 155 17.1 16.1 11.6 9.0 7.0 9.39 6.3 7.3 11.4 17.1 17.2 18.2 18.7 17.1 13.4 11.4 17.1 17.2 18.2 18.7 18.7 11.4 17.1 18.6 17.1 13.4 11.4 17.1 17.1 18.7 18.2 18.2 18.7 18.2 <th>Clay</th> <td>15</td> <td>6.0</td> <td>3.8</td> <td>4.</td> <td>0.1</td> <td>3.1</td> <td>1.5</td> <td>0.1</td> <td>9.0</td> <td>3.0</td> <td>0.9</td> <td>4.6</td>	Clay	15	6.0	3.8	4.	0.1	3.1	1.5	0.1	9.0	3.0	0.9	4.6
45 5.1 -wh (a) 6.2 5.3 -ret (16) 5.0 -ret (3) 6.3 156 17.1 16.1 14.7 15.2 16.7 15.4 13.9 13.9 18.2 155 14.1 17.2 18.6 13.3 15.5 17.1 11.4 17.2 6.2 6.2 6.4 11.6 9.0 7.0 9.39 6.3 6.5 7.3 8.2 6.2 6.4 11.6 9.0 7.0 9.39 6.3 6.5 7.3 8.2 6.2 6.4 11.6 9.0 7.0 9.39 6.3 6.5 7.3 8.2 6.0 5.6 6.2.2 49.4 5.1 6.0 7.0 9.39 6.3 8.4 17.1 cene 6.0 4.3 5.6 6.2 49.4 5.1 46.0 7.3 6.2 7.3 7.3 8.4 17.1 17.1 17.1 17.1 17.1	Metals (mg/Kg dry weight)												
156 17.1 16.1 14.7 15.2 16.7 15.4 13.0 13.9 13.2 155 14.1 17.2 18.6 13.3 15.5 17.1 13.4 11.4 17.1 155 14.1 17.2 18.6 13.3 15.5 17.1 13.4 11.4 17.1 155 14.1 17.2 18.6 13.3 15.5 17.1 13.4 11.4 17.1 155 14.1 17.2 18.6 13.3 15.5 17.1 13.4 11.4 17.1 152 0.039 0.043 0.069 0.042 0.063 0.031 0.029 0.028 440.039 0.028 25 37.5 60.4 56.7 49.4 51.6 52.5 46.0 43.4 55.6 26 37.5 60.4 56.7 490.03 37.9 48.8 49.0 49.0 49.0 26 37.5 60.4 56.7 490.03 12.8 76 490.03 490.03 37 490.03 490.03 490.03 490.03 490.03 490.03 490.03 38 490.03 490.03 490.03 490.03 490.03 490.03 490.03 39 49.1 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49 40.0 40.0 40.0 49.0 49.0 49.0 49.0 49.0 49 40.0 40.0 40.0 49.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 49.0 49.0 49.0 49.0 40 40 40 40.0 40.0 40.0 40 40 40 40.0 40.0 40.0 40 40 40 40.0 40.0 40.0 40 40 40 40.0 40.0 40.0 40 40 40 40.0 40.0 40.0 40 40 40 40.0 40.0 40.0 40 40 40 40.0 40.0 40 40 40 40.0 40.0 4	Arsenic	4.5	5.1	(3.6)	6.2	5.3	(3.6) KIM>	4.0	2.0	< MDL 3.3)	6.3	7.3	<mdl (4.7)<="" td=""></mdl>
155 141 172 186 13.3 15.5 17.1 13.4 114 17.1 62	Chromium	156	17.1	16.1	14.7	15.2	16.7	15.4	13.0	139	13.2	22.1	21.1
62 6.4 6.4 11.6 9.0 7.0 9.39 6.3 6.5 7.36 8.2 9 dry weight, cene 2 5.4 46.4 56.6 62.2 49.4 51.6 52.6 46.0 9.028 ever (0.2) 6.028 9 dry weight, cene 2 5. 37.5 6.04 56.7 ever (2.2) 7.3 ever (2.2) ever (2.3) 8.14 36 ever (2.3) 6.04 56.7 ever (2.3) 7.3 ever (2.3) ever (2.3) ever (2.3) ever (2.3) 2.5 ever (Copper	15.5	14.1	17.2	18.6	13.3	15.5	17.1	13.4	11.4	17.1	18.4	24.9
6 day 0.043 0.043 0.044 0.053 0.031 0.029 0.028 κου (107) 0.028 g dry weight, cene 52.4 48.4 56.6 62.2 49.4 51.6 52.6 46.0 43.4 55.6 g dry weight, cene 26 37.5 60.4 56.7 κνα (23) 73.9 κνα (23) κνα (23) <t< th=""><th>pear</th><td>62</td><td>6.4</td><td>11.6</td><td>9.0</td><td>7.0</td><td>9.39</td><td>6.3</td><td>6.5</td><td>7.36</td><td>8.2</td><td>8.7</td><td>18.0</td></t<>	pear	62	6.4	11.6	9.0	7.0	9.39	6.3	6.5	7.36	8.2	8.7	18.0
g dry weight, 524 48.4 56.6 62.2 49.4 51.6 52.6 46.0 43.4 55.6 g dry weight, cene 25 37.5 60.4 56.7 cmt.(22) 73 cmt.(22) cmt.(23) cmt.(23)<	Mercury	0.03	0.043	690.0	0.042	0.063	0.031	0.029	0.028	<mdl (1.025)<="" td=""><td>0.028</td><td>0.049</td><td>0.072</td></mdl>	0.028	0.049	0.072
g dry weight, -MOL(22) -MOL(21)	Zinc	52.4	48.4	. 9.95	62.2	49.4	51.6	52.6	46.0	43.4	55.6	56.1	68.3
Corne 26 76.2 4PL (23)	Organics (µg/Kg dry weight)	:	:										
cene 26 37.5 60.4 56.7 < MD, (23)	Anthracene	<mdl(22)< td=""><td><mdl (21)<="" td=""><td>8.0</td><td>< MDL (25)</td><td>< MOL (22)</td><td>7.3</td><td><mdl (22)<="" td=""><td>< MDL (22)</td><td>< MDL 5.4)</td><td>< MBL (23)</td><td>(47) KIN></td><td>(MDL (7.6)</td></mdl></td></mdl></td></mdl(22)<>	<mdl (21)<="" td=""><td>8.0</td><td>< MDL (25)</td><td>< MOL (22)</td><td>7.3</td><td><mdl (22)<="" td=""><td>< MDL (22)</td><td>< MDL 5.4)</td><td>< MBL (23)</td><td>(47) KIN></td><td>(MDL (7.6)</td></mdl></td></mdl>	8.0	< MDL (25)	< MOL (22)	7.3	<mdl (22)<="" td=""><td>< MDL (22)</td><td>< MDL 5.4)</td><td>< MBL (23)</td><td>(47) KIN></td><td>(MDL (7.6)</td></mdl>	< MDL (22)	< MDL 5.4)	< MBL (23)	(47) KIN>	(MDL (7.6)
Charles Char	Jenzo(a)anthracene	\$2	37.5	4.09	26.7	< MDL (22)	37.9	48.8	< MDL (22)	8.14	92	0.99	24.9
The color of the	<i>Benzo(a)pyrene</i>	< MDi (36)	41	97.6	59	< MDL (37)	26.8	23	< MDL (37)	< MDL 4:0)	< Mbt (39)	65	·MDL (5.7)
Yége 762 C HOL (35) 24.8 C HOL (37) C HOL (13) C HOL (13) <t< th=""><th>Senzofluoranthenes (Total)</th><td>< MDI (58)</td><td>57</td><td>198</td><td>< MDL (67)</td><td>< MDL (59)</td><td>128</td><td>92</td><td>< MDL (59)</td><td>¥</td><td>7</td><td>110</td><td>33.6</td></t<>	Senzofluoranthenes (Total)	< MDI (58)	57	198	< MDL (67)	< MDL (59)	128	92	< MDL (59)	¥	7	110	33.6
170 258 259 250 227 162 (MDL (159) 226 809 190 Chaptalate	Jenzo(q,h,i)perylene	762	< MDL (35)	24.8	< MDI (42)	< MDL (37)	< MDL (12)	(8E) KUM >	< MDL (37)	<mdl(11)< th=""><th>< Mbt (39)</th><th>4</th><th><mdl (15)<="" th=""></mdl></th></mdl(11)<>	< Mbt (39)	4	<mdl (15)<="" th=""></mdl>
Phithalate	3enzoic Acid	170	258	565	250	227	162	< MDL (150	226	809	961	380	268
Charle C	3is(2 ethylhexyl) Phthalate	<mdl (360)**<="" th=""><th><mdl (240)**<="" th=""><th>349</th><th>:MDL (360)**</th><th><mdl (240)**<="" th=""><th>506</th><th><mdl (360)**<="" th=""><th><mdl (240)**<="" th=""><th><mdi (73)**<="" th=""><th><mdl(360)**< th=""><th>413</th><th>389</th></mdl(360)**<></th></mdi></th></mdl></th></mdl></th></mdl></th></mdl></th></mdl>	<mdl (240)**<="" th=""><th>349</th><th>:MDL (360)**</th><th><mdl (240)**<="" th=""><th>506</th><th><mdl (360)**<="" th=""><th><mdl (240)**<="" th=""><th><mdi (73)**<="" th=""><th><mdl(360)**< th=""><th>413</th><th>389</th></mdl(360)**<></th></mdi></th></mdl></th></mdl></th></mdl></th></mdl>	349	:MDL (360)**	<mdl (240)**<="" th=""><th>506</th><th><mdl (360)**<="" th=""><th><mdl (240)**<="" th=""><th><mdi (73)**<="" th=""><th><mdl(360)**< th=""><th>413</th><th>389</th></mdl(360)**<></th></mdi></th></mdl></th></mdl></th></mdl>	506	<mdl (360)**<="" th=""><th><mdl (240)**<="" th=""><th><mdi (73)**<="" th=""><th><mdl(360)**< th=""><th>413</th><th>389</th></mdl(360)**<></th></mdi></th></mdl></th></mdl>	<mdl (240)**<="" th=""><th><mdi (73)**<="" th=""><th><mdl(360)**< th=""><th>413</th><th>389</th></mdl(360)**<></th></mdi></th></mdl>	<mdi (73)**<="" th=""><th><mdl(360)**< th=""><th>413</th><th>389</th></mdl(360)**<></th></mdi>	<mdl(360)**< th=""><th>413</th><th>389</th></mdl(360)**<>	413	389
32 58.2 81.9 84.7 29 49.0 72.4 34 7.5 53.1 200	3utyl Benzyl Phthalate	<mdl(22)< th=""><th>< MOI (21)</th><th>29.6</th><th><mdl (25)<="" th=""><th><mdi (72)<="" th=""><th>22.1</th><th>< MDL (22)</th><th><mol (22)<="" th=""><th>(0 8 KUW.)</th><th><m0l (23)<="" th=""><th><4Dl (24)</th><th>34.9</th></m0l></th></mol></th></mdi></th></mdl></th></mdl(22)<>	< MOI (21)	29.6	<mdl (25)<="" th=""><th><mdi (72)<="" th=""><th>22.1</th><th>< MDL (22)</th><th><mol (22)<="" th=""><th>(0 8 KUW.)</th><th><m0l (23)<="" th=""><th><4Dl (24)</th><th>34.9</th></m0l></th></mol></th></mdi></th></mdl>	<mdi (72)<="" th=""><th>22.1</th><th>< MDL (22)</th><th><mol (22)<="" th=""><th>(0 8 KUW.)</th><th><m0l (23)<="" th=""><th><4Dl (24)</th><th>34.9</th></m0l></th></mol></th></mdi>	22.1	< MDL (22)	<mol (22)<="" th=""><th>(0 8 KUW.)</th><th><m0l (23)<="" th=""><th><4Dl (24)</th><th>34.9</th></m0l></th></mol>	(0 8 KUW.)	<m0l (23)<="" th=""><th><4Dl (24)</th><th>34.9</th></m0l>	<4Dl (24)	34.9
Treene Amplians 0.99 (101) CMU(LL) Amplians	Chrysene	33	58.2	81.9	84.7	53	49.0	72.4	, 8	7.9	53.1	4.	17.2
GOZ 101 162 132 54.0 110 119 52.2 245 75.1	1,4-Dichlorobenzene	< MDI (0.93)	0.99	<mdt. (0.19)<="" th=""><th>< MDL (1.1)</th><th>< MOL (0.94)</th><th><mdi (0.19)<="" th=""><th>× MDL (0 %</th><th>< MDL (0.95)</th><th>< MDL ().17)</th><th>< M0L (1.0)</th><th>< 1DL (1.1)</th><th>MUL (0.25)</th></mdi></th></mdt.>	< MDL (1.1)	< MOL (0.94)	<mdi (0.19)<="" th=""><th>× MDL (0 %</th><th>< MDL (0.95)</th><th>< MDL ().17)</th><th>< M0L (1.0)</th><th>< 1DL (1.1)</th><th>MUL (0.25)</th></mdi>	× MDL (0 %	< MDL (0.95)	< MDL ().17)	< M0L (1.0)	< 1DL (1.1)	MUL (0.25)
Д)ругейе (мих (зб. 33.6 46 миц (зл. 22 миц (зг.) мих (з	Huoranthene	602	101	162	132	54.0	110	119	52.2	245	8.1	178	50.3
23 44.7 65.3 62.4 25 39.0 80.1 25 8.4 38 59.1 79.0 125 126 37.8 79.1 125 38.4 5.9 75.9 45.9 6.8 60.9 61.8 70.6 161 306 271 1,830 25	indeno(1,2,3-c,d)pyrene	× MDI (36)	< MDL (35)	33.6	46	< MDL (37)	22	. × MDL (38)	< MDL (37)	<mdl(12)< th=""><th>< MDL (39)</th><th>25</th><th>< MDL (17)</th></mdl(12)<>	< MDL (39)	25	< MDL (17)
591 79.0 125 126 37.8 79.1 125 38.4 5.9 75.9 45.9 45.9 6.8 60.9 61.8 70.6 161 306 271 1,830 25	Phenanthrene	*	4.7	65.3	62.4	22	39.0	80.1	52	8.4	38	76.5	15.6
459 6.8 60.9 61.8 70.6 161 306 271 1,830 25	Yrene	591	79.0	125	126	37.8	79.1	125	38.4	5.9	75.9	159	< MDL (7.6)
	Fotal PCBs	459	8.9	6.09	61.8	70.6	161	306	271	1,830	22	9.9	42.2

Z

nigKg diy weght - Miligram per kilogram normalized to dry wight hased on percent solids analysis. pg/Kg dry weght - Micrograms per kilogram normalized to dry veght based on percent solids analysis.

MDL (#) - Analyte nx detected above the method detection limit. Value in parentheses is the numeric MEL.

MDL raised to 5 X the concentration of bis(2-ithylhexyl)phthaate detected in the method blank.

Page 1 of 10

)					•								•
PROJECT: 423056-160 Norfolk CSO Sediment Remediation Five-Year Monitoring Program Year Two - April 2001 Sampling Event	Locato: Descrip: Sampled: Lab ID Matrix:	NFK501 Norfolk CSO Ch Apr 24, 2001 L20703-1 SALTWTRSED 68 5.	NFK501 Norfolk CSO Channel Apr 24, 2001 L20703-1 SALTWTRSED		Locator: Ni Descrip: Ni Sampled: Ai Lab ID: Li Matrix: Si Mids: 38	NFK501 Norfolk CSO Ct Apr 24, 2001 L20703-2 SALTWTRSED	VFK501 Vorfolk CSOChannel Apr 24, 2001 20703-2 SALTWTRSED		Locator: Descrip: Sampled: Lab ID: Matric: % Sclids:	NFK502 Combined Channel Delta Apr 24, 2001 L20703-3 SALTWTRSED 67.1	Channel 01 :SED	Delta	Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	NFK502 Combined Char Apr 24, 2031 L20703-4 SALTWTRSED 66.5	NFK502 Combined Channel Delta Apr 24, 2031 L20703-4 SALTWTFSED 66,5	olfa
Parameters	Value		al MDL RDL - Dry Weicht Basis	Units		Qual Dry	Qual MDL RDL - Dry Weght Basis	Units			al MDL RDL - Dry Weight Basis	DL Units			al MDL RDL - Dry Weight Basis	. Units
COMBINED LABS		i					,			•						
M+CV ASTM [422	4	,	,	3	1		3	è	Č		č	ò	Č	_	,	6
Clay *	3.8		0.1	%	3.7		0.1	%	3.1		5	۶ :	4.2			8
Gravel *	0.22	2 E	0.1	%	0.9	ш	0.1	%	- 1.	<mdl,e< td=""><td>0.1</td><td>8</td><td></td><td><mdl,e< td=""><td>0.1</td><td>%</td></mdl,e<></td></mdl,e<>	0.1	8		<mdl,e< td=""><td>0.1</td><td>%</td></mdl,e<>	0.1	%
p+0.00 *	1.8	ø.	0.1	%	1.8		0.1	%	0.97		0.1	%	0.		0.1	%
p+1.00 *	16.3		0.1	%	15.7		0.1	%	19.6		0.1	%	19.2	~.	0.1	%
D+10.0 *	96.0	3	0.1	%	9.0		0.1	%	0.74		0.1	%	0.58	_	0.1	%
n+10 0(more than) *	1.3	3	0.1	%	1.4		0.1	%	1.2		0.1	%	0.93	_	0.1	%
D+2 00 *	42.6	8	0.1	%	36.5		0.1	%	54.5		0.1	%	58.9	_	0.1	%
0+3 00 *	9.2	2	0.1	%	11.3		0.1	%	11.2		0.1	%	9.6		0.1	%
0+4 00 *	11.6	00	0.1	%	13.5		0.1	%	2.8		0.1	%	2.4		0.1	%
0+200 *	6.1	1	0.1	%	6.9		0.1	%	1.8		0.1	%	2.2	21	0.1	%
0+6.00	3.8	8	0.1	%	4.5		0.1	%	2.5		0.1	%	2		0.1	%
0+2.00 *	2.4	4	0.1	%	3		0.1	%	1.8		0.1	%	4:1		0.1	%
0+800	2.2	2	0.1	%	2.2		0.1	%	1.6		0.1	%	1.2		0.1	%
***************************************	1.5	5	0.1	%	1.5		0.1	%	1.2		0.1	%	0.9		0.1	%
100*	0.22	2	0.1	%	6.0		0.1	%		₹WDΓ	0.1	%		₹₩DΓ	0.1	%
p-200*		ďW⊳	0.1	%	0.59		0.1	%		≺MDL	0.1	%		≺MDL	0.1	%
p-2.00(less than) *		V₩DF	0.1	%		∠MDL	0.1	%		<mdl< td=""><td>0.1</td><td>%</td><td></td><td><mdl< td=""><td>0.1</td><td>%</td></mdl<></td></mdl<>	0.1	%		<mdl< td=""><td>0.1</td><td>%</td></mdl<>	0.1	%
Sand *	81.4	4	0.1	%	78.8		0.1	%	89.1		0.1	%	9.06		0.1	%
Sit *	14.6	9	0.1	%	16.6		0.1	%	7.7		0.1	%	6.9		0.1	%
M=CV EPA9060-PSEP96 (0304-002-001)																
Total Organic Carbon	3180	0	730 1460	1460 mg/Kg	8670		760 1530	1530 mg/Kg	6510		750 14	1490 mg/Kg	4990		750 150	1500 mg/Kg
M=CV SM2540-G (03-01-007-001)																ŀ
Total Solids *	68.5	5	0.005	%	65.4		0.005 0.01	%	67.1		0.005	0.01 %	66.5		0.005 0.01	%
M=ES NONE																
Sampcoordx1 *	1278590	٥		#					1278509			=				
Sampcoordx2 *	1278581	_		=					12/8513			=				
Sampcoontx3 *	1278577	7		=					12/8514			= 3				
Sampcoordy1 *	190154	.¥		#					130154			=				
Sampcoordy2 *	190146	و		#					130157			= :				
Sampcoordy3 *	190159	g.		#					130157			=				
Sample Depth *		*		٤	7			Ε	2			ε	(1			ε
Sample Start Time *	1045	ις.		E	1045			È	1141			ᆂ	1141			ב
Sampling Method	29243.796	و		none	30629.969			none	29853.949			none	30123.308			none
Sediment Sampling Depth *		12		ફ	13			g	=			Ę	-			틍
Sediment Sampling Range *	0-2 cm			none	0-10 cm							none	0-10 cm			none
Sediment Type	32N20				32N20			none	32N20			none	32N20			none
Tidal Condition	ш			none	ш			none	S			none	S			none

Data Management and Analysis Section Comprehensive Report #10136

report
amos 1
ģ
ear nonitoring
.5
23/01

	Units	4
el Delta	PD.	
t Chanr 201 RSED	MDL Weight B	
FK502 ombinec or 24, 20 20703-4 ALTWTF	Qual - _{Dry}	
Z Q & .: ;		0
Locate Descring Samp Lab ID Matrix Soli		
	Cnits	#
inel De	RDL Basis	
ed Char 2001 3 TRSED	MD. y Weight	
NFK502 Combine Apr 24, 3 L20703-3 SALTW1		_
Locator: Cescrip: Sampled: Lab ID: Natrix: % Solids:	Value	J
	Units	#
900	RDL asis	
SO Cha 301 3SED	MDL Weight B	
VFK501 Vorfolk C4 Vpr 24, 20 20703-2 SALTWTF	Qual · _{Dry}	
rip: Ned: A	alue	7
Loca Desc Sam Sam Lab Matr Matr		
	uri.	422
¥annel	×	
1 CSO C 2001 -1 TRSEI	MD 7ry Weigt	
	ð	2
Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	Value	
PROJECT: 423056-160 Norfolk CSO Sedirrent Remediation Five-Year Monitoring Program Year Two - April 20)1 Sampling Event	Parameters COMBINED LABS	Tide Height *
	Locator. NFK501 Locator. Descrip: Norfolk CSO Channel Locator: Descrip: Norfolk CSO Channel Cescrip: Sampled: Apr 24, 2001 Sampled: Apr 24, 2001 Sampled: Lab ID: L20703-1 Lab ID: L20703-2 Lab ID: Matrix: SALTWTRSED Matrix: Matrix: Matrix: % Solids: 68.5 % Solids: 65.4 % Solids:	Locator: NFK501 Locator: NFK502 Locator: Locator: Docator: Locator: Docator: Combined Channel Delta Locator: Locator: Docator: Docator: Docator: Locator: Docator: Docator:

_	Units		ma/Ka	9	mg/Kg	mg/Kg	97/0	DAY ON		y Ko	11 ma/Kg	y Ko	y o) Q	, S	mo/Ko	y K	5	ug/Ka	ug/Kg) A	ug/Kg	ug/Kg	ug/Kg	ug/Kg		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Ϋ́	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Delta	RDL ssis		0.302		36.7	18.3	1.30/ mg/Kg	1 83 molks	1.00 mg/kg	18.3 mo/Kg	1	0.734 ma/Kg	7.34 ma/Kg	18.3 ma/Ka	1.47 ma/Ka	73.4	1.83 ma/Kg		12.5 u	12.5 u		12.5 u	12.5 u	12.5 u	12.5 u		0.797 u	0.797 u	30.1 u	0.797 u	0.397 ug	36.1 ug/Kg	39.1 uç	48.1 uc				48.1 uc
Hanne 1 ED	al MDL RI -Dry Weight Basis		0.03		7.4	- 1	0.074	36.0	3 6	3.6	23	1	1						6.3	6.3	ĺ	6.3	6.3	6.3	6.3		0.39 0.	0.39 0.	15	0.39 0.	0.2 0.		203	24 4				24 4
NFK502 Combhed Channel Delta Apr 24, 2001 L20703-4 SALTWTRSED 66.5	al -Dry W. N										_			_	İ		-																					
NFK502 Combrec Apr 24, 20 L20703-4 SALTWTF	Quai -		-WDI	Ιİ	- 1	₩Ş.				O	⊽			<mdl< td=""><td><mdl< td=""><td>ΨDΓ</td><td></td><td></td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>₹WDF</td><td></td><td></td><td><mdl< td=""><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>ΨDΓ</td><td></td><td></td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>₹WDF</td><td></td><td></td><td><mdl< td=""><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	ΨDΓ			<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>₹WDF</td><td></td><td></td><td><mdl< td=""><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>₹WDF</td><td></td><td></td><td><mdl< td=""><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>₹WDF</td><td></td><td></td><td><mdl< td=""><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<>	₹WDF			<mdl< td=""><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<>		<mdl,g< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td>≺MDL</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	≺MDL	<mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<></td></mdl,g<>	<mdl< td=""><td>MDL</td><td><mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<></td></mdl<>	MD L	<mdl< td=""><td>ΥMDL</td><td>∠MDL</td><td>ÅDL</td><td>₩V</td></mdl<>	ΥMDL	∠MDL	ÅDL	₩V
Locator: Descrp: Samped: Lab IC: Matrix % Solds:	Value				10100	90.0	7.50	13.3	13.1	18600	9.6	355	12.3				46.5						55.2	38.9				,										
	Units		g Kg		g g	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8) Y	» /o	, o	Š	g Kg	, KG	g/Kg	g/Kg	g/kg	mg/Kg	mg/Kg		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ng/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Ž,	ug/Kg
Defta	႕		.295 n		35.9 mg/Kg	17.9 mg/Kg	1.08 ma/Ka	1.79 ma/Ka	1.44 ma/Kg	17.9 mg/Kg	10.8 mg/Kg	0.717 mg/Kg	7.17 mg/Kg	17.9 mg/Kg	1.44 mg/Kg	71.7 m			12.4 u	12.4 u	12.4 u	12.4 u			12.4 u		0.79 uç	0.79 ს	29.8 uç	0.79 uç	0.393 uç			47.7 ug	20.9 ug	8.94 ug		47.7 ug
NFK502 Combined Channel Delta Apr 24, 2001 L20703-3 SALTWTRSED 67.1	al MDL Ri - Dry Weight Basis		0.03 0.295 mg/Kg			3.6					21	0.40	14	36	0.28	4	0.36		63						63	- 1	- 1	0.39	- 1	ŀ	٠,			24	5	4.5 8		77
NFK502 Combined Chai Apr 24, 2001 L20703-3 SALTWTRSED 67.1	Qual I		<rdl< td=""><td></td><td>_</td><td>«MDL</td><td></td><td></td><td></td><td>9</td><td>^RDL</td><td></td><td></td><td><mdl_< td=""><td></td><td>占</td><td></td><td></td><td>占</td><td>DL.</td><td>占</td><td>DF</td><td></td><td></td><td>占</td><td></td><td></td><td>- 1</td><td></td><td>1</td><td></td><td>ر م</td><td>L,G</td><td>L,G</td><td>بر 1</td><td>7</td><td>7</td><td>거</td></mdl_<></td></rdl<>		_	«MDL				9	^RDL			<mdl_< td=""><td></td><td>占</td><td></td><td></td><td>占</td><td>DL.</td><td>占</td><td>DF</td><td></td><td></td><td>占</td><td></td><td></td><td>- 1</td><td></td><td>1</td><td></td><td>ر م</td><td>L,G</td><td>L,G</td><td>بر 1</td><td>7</td><td>7</td><td>거</td></mdl_<>		占			占	DL.	占	DF			占			- 1		1		ر م	L,G	L,G	بر 1	7	7	거
			ľ					1	lo.			2	9	₹	-WDI	₩V	9		√WDF	<mdl< td=""><td><mdi.< td=""><td><mdf< td=""><td>93</td><td></td><td>₩DF</td><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>ŞWDΓ</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdf<></td></mdi.<></td></mdl<>	<mdi.< td=""><td><mdf< td=""><td>93</td><td></td><td>₩DF</td><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>ŞWDΓ</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdf<></td></mdi.<>	<mdf< td=""><td>93</td><td></td><td>₩DF</td><td></td><td><mdl,g< td=""><td><mdl,g< td=""><td>ŞWDΓ</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdf<>	93		₩DF		<mdl,g< td=""><td><mdl,g< td=""><td>ŞWDΓ</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td>ŞWDΓ</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	ŞWDΓ	<mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<></td></mdl,g<>	<mdl< td=""><td><mdl< td=""><td>₩</td></mdl<></td></mdl<>	<mdl< td=""><td>₩</td></mdl<>	₩
Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	Value		0.031		10900	76.0	5	16.7	15.5	19800	9.4	405	12.6				51.6						0	68.4														
<u> </u>	Units		g/Kg		g Q	S S	, S	Š	χ	P, Kg	g/g	g/kg	g/Kg	g/Kg	g Rg	S S	gkg		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg		ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
<u>a</u>	႕		0.3 mg/Kg		38.1 mg/Kg	19.1 mg/Kg 0.381 mc/Kg	1.14 ma/Ka	1.91 mg/Kg	1.52 mg/Kg	19.1 mg/Kg	11.4 mg/Kg	0.763 mg/Kg	7.63 mg/Kg	19.1 mg/Kg	1.52 mg/Kg	76.3 mg/Kg	1.91 mg/Kg		12.7 u					- 1	12.7 ug		0.81 2	0.81 uç		0.81 uç	- 1	36.7 uc	39.8 uc	8.9 L		9.17 ug		48.9 ug
Chani I ED	al MDL RI - Diy Weight Basis		0.031		-	3.8				3.8	2.3	0.15 0.	1.5	3.8	0.31	15	0.38						- 1	- 1	6.4	- 1	- 1		i					- 1	11 2		- 1	24
NFK501 Norfolk CSO Channel Apr 24, 2001 L20703-2 SALTWTRSED 65.4	Qual M · Dy We		1			- 1	Ι.									占												1	j	-		ດ້	တ္	ပ္	တ္		اہ	_
Norfolk Norfolk Apr 24, L20703- SALTW 65.4	ð		3 <rdl< td=""><td></td><td>- 1</td><td>WDF WDF</td><td>ΥMDΓ</td><td>1</td><td>10</td><td>9</td><td></td><td>7</td><td>~</td><td>ΑMDL</td><td><mdl< td=""><td><mdl <mdl< td=""><td></td><td></td><td><mdl< td=""><td>-WD[-</td><td><mdl< td=""><td>VWD[</td><td>_</td><td>- 1</td><td>₩DF</td><td></td><td><mdl,g< td=""><td>«MDL,G</td><td>~WDL</td><td>«MDL,G</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<></mdl </td></mdl<></td></rdl<>		- 1	WDF WDF	ΥMDΓ	1	10	9		7	~	ΑMDL	<mdl< td=""><td><mdl <mdl< td=""><td></td><td></td><td><mdl< td=""><td>-WD[-</td><td><mdl< td=""><td>VWD[</td><td>_</td><td>- 1</td><td>₩DF</td><td></td><td><mdl,g< td=""><td>«MDL,G</td><td>~WDL</td><td>«MDL,G</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<></mdl </td></mdl<>	<mdl <mdl< td=""><td></td><td></td><td><mdl< td=""><td>-WD[-</td><td><mdl< td=""><td>VWD[</td><td>_</td><td>- 1</td><td>₩DF</td><td></td><td><mdl,g< td=""><td>«MDL,G</td><td>~WDL</td><td>«MDL,G</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<></mdl 			<mdl< td=""><td>-WD[-</td><td><mdl< td=""><td>VWD[</td><td>_</td><td>- 1</td><td>₩DF</td><td></td><td><mdl,g< td=""><td>«MDL,G</td><td>~WDL</td><td>«MDL,G</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<>	-WD[-	<mdl< td=""><td>VWD[</td><td>_</td><td>- 1</td><td>₩DF</td><td></td><td><mdl,g< td=""><td>«MDL,G</td><td>~WDL</td><td>«MDL,G</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<>	VWD[_	- 1	₩DF		<mdl,g< td=""><td>«MDL,G</td><td>~WDL</td><td>«MDL,G</td><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	«MDL,G	~WDL	«MDL,G	<mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td><mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<></td></mdl,g<>	<mdl,g< td=""><td>NDF</td><td>₩ Z</td><td>₩DF</td></mdl,g<>	NDF	₩ Z	₩DF
Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	Value		0.043	70007	13300	0.382		17.4	18.5	22300	1.8	492	15.2				S.						16.8	18.7														
*ZĽÑÒĽ	Units	-	βg	1	D S	2 2	Ş	ş	18 S	Ž Š	Ş,	홠	χg	λg	mg/Kg	yKg.	mg/Kg		ng/Kg	¥ g	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg		gy/g	ng/Kg	ng/Kg	ng/Kg	g/g	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ng/Kg	ug/Kg	ng/Kg
70	거		0.283 mg/Kg		3.7c	0.372 ma/Ka	1.12 mg/Kg	1.85 mg/Kg	1.49 mg/Kg	18.5 mg/Kg	11.2 mg/Kg	0.743 mg/Kg	7.43 mg/Kg	18.5 mg/Kg	1.49 m	74.3 mg/Kg	1.85 mg		12.2 ug	12.2 ug/Kg	12.2 ug				12.2 ug		0.774 ug	0.774 ug	29.2 ug	0.774 ug			- 1	46.7 ug	20.4 ug		- 1	46.7 ug
Chann	മ്		0.028 0.3			3.c 1 0.074 0.3		1	0.25	3.6	2.2	0.15 0.7	1.5 7		0.29		0.36 1		6.1	- 1	- 1	- 1	- 1	- 1	6.1		0.38 0.7			0.38 0.7			- 1		- 1	1 1	5 2	1
NFK501 Norfolk CSO Channel Apr 24, 2001 L20703-1 SALTWTRSED 68.5	al MDL - Dry Weight						١.										0								-	ļ	- 1		- 1		- 1	ار	ار	ار	ŀ		_	_
NFK501 Norfolk C. Apr 24, 20 L20703-1 SALTWTI 68.5	Qual - Dr		- KDL			\$ 2 2 2	1	_		9		_		<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td></td><td></td><td><mdl< td=""><td>₩DF.</td><td>- ADP</td><td>₩DE</td><td></td><td>- 1</td><td>WDF.</td><td></td><td>SMDL,G</td><td><mdl,g< td=""><td>ZWD.</td><td><mdl,g< td=""><td>oMDL,G</td><td>VMDF.</td><td>- MDL</td><td>√MDL</td><td>ΥMDΓ</td><td>-₩DF</td><td>- MDF</td><td>Ş MDŞ</td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td></td><td></td><td><mdl< td=""><td>₩DF.</td><td>- ADP</td><td>₩DE</td><td></td><td>- 1</td><td>WDF.</td><td></td><td>SMDL,G</td><td><mdl,g< td=""><td>ZWD.</td><td><mdl,g< td=""><td>oMDL,G</td><td>VMDF.</td><td>- MDL</td><td>√MDL</td><td>ΥMDΓ</td><td>-₩DF</td><td>- MDF</td><td>Ş MDŞ</td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td><mdl< td=""><td>₩DF.</td><td>- ADP</td><td>₩DE</td><td></td><td>- 1</td><td>WDF.</td><td></td><td>SMDL,G</td><td><mdl,g< td=""><td>ZWD.</td><td><mdl,g< td=""><td>oMDL,G</td><td>VMDF.</td><td>- MDL</td><td>√MDL</td><td>ΥMDΓ</td><td>-₩DF</td><td>- MDF</td><td>Ş MDŞ</td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl<>			<mdl< td=""><td>₩DF.</td><td>- ADP</td><td>₩DE</td><td></td><td>- 1</td><td>WDF.</td><td></td><td>SMDL,G</td><td><mdl,g< td=""><td>ZWD.</td><td><mdl,g< td=""><td>oMDL,G</td><td>VMDF.</td><td>- MDL</td><td>√MDL</td><td>ΥMDΓ</td><td>-₩DF</td><td>- MDF</td><td>Ş MDŞ</td></mdl,g<></td></mdl,g<></td></mdl<>	₩DF.	- ADP	₩DE		- 1	WDF.		SMDL,G	<mdl,g< td=""><td>ZWD.</td><td><mdl,g< td=""><td>oMDL,G</td><td>VMDF.</td><td>- MDL</td><td>√MDL</td><td>ΥMDΓ</td><td>-₩DF</td><td>- MDF</td><td>Ş MDŞ</td></mdl,g<></td></mdl,g<>	ZWD.	<mdl,g< td=""><td>oMDL,G</td><td>VMDF.</td><td>- MDL</td><td>√MDL</td><td>ΥMDΓ</td><td>-₩DF</td><td>- MDF</td><td>Ş MDŞ</td></mdl,g<>	oMDL,G	VMDF.	- MDL	√MDL	ΥMDΓ	-₩DF	- MDF	Ş MDŞ
Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	Value		0.069	44000	56	0.34		16.1	17.2	20700	11.6	629	14.6				56.6						30.4	30.5														
PROJECT: 423056-160 Norfolk CSO Sediment Remediation Five-Year Monitoring Program Year Two - April 2001 Sampling Event	•	03)		M=MT EPA3050A/6010B(06-02-004-002)												•		3-002)					:			01-004)												
56-160 liment F ring Prc 2001 Se	,	5S -01-304-01	ΑΑ	0-90)B0I	اذ	រុំ	ರಿ	8	م.			J, CP		S C		CP		82 (7-3-0:								700 (7-3-	nzene	ene	azine	e e	ene	euo	enol	ا ج	5			ene
: 4230: 30 Sed Monito - April ;	တ	ED LAE 45.5 (06-	otal, C	050A/601	()	Total. I	Total,	, Total,	otal, IC	요	E CP	e, Tota	tal, ICF	Total,	al, ICP	Total, It	- - - - -	1550B/80	16	2	8	42	æ	2	8	\$550B/82	ego.oic	robenz	ylhydr	openz.	robenz	loroph	Horoph	rophen	hylpher	toluene	toluene	aphtna
PROJECT: 423056-160 Norfolk CSO Sediment Remed Five-Year Monitoring Program Year Two - April 2001 Samplin	Parameters	COMBINED LABS M=MT EPA 245.5 (06-01-)04-003)	Mercury, Total, CVAA	WT EPA3(Auminum, 10tal, 10-	Arsenic Total, ICP Berylliun, Total, ICP	Cadmium, Total, ICP	Chromium, Total, IOP	Copper Total, ICP	Iron, Tctal, ICP	Lead, Total, ICP	Manganese, Total, ICP	Nickel, Total, ICP	Selenium, Total, ICP	Silver, Total, ICP	Thallium, Total, ICP	Zinc, Total, ICP	M=OR EFA 3550B/8082 (7-3-03-002)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	M=OR EFA 3550B/8270C (7-3-01-004)	1,2,4-I achiorobenzene	1,2-Dichlorobenzene	1,2-Diphenylhydrazine	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichtorophenol	2,4,6-Trichtorophenol	2,4-Dichlorophenol	2,4-Dirrethylpheno	2,4-Dintrotoluene	2,6-Dinitrotoluene	HCOIN.
R S F ≥	Pa	S I	¥	¥	₹ .	¥ 8	ঔ	ਹਿੰ	8	₽	Ĕ	Ma	ž	Se	S	Ë	Zin	Ŧ	Ā	٩	¥	¥	¥	¥	¥	Ī.	7		,,	<u>~</u>	4.	2,4	2,	2,4	2,4	2,4	25	1

Data Management and Analysis Section Comprehensive Report #10136

12/3/01 - 5 year monitoring 0401 comp report

)	ŀ,					b		•	r					
PROJECT: 423056-160 Norfolk CSO Sediment Remodiation	Locator:	NFK501	ion of C	<u></u>		NFK501	Č		Locator:	NFK502	į		Locator:	NFK502			-200
Five-Year Monitoring Program	Sampled:	Apr 24, 2001) Caring	<u> </u>	. #	Noriolk CSU Apr 24, 2001	Apr 24, 2001		vescrip: Sampled:	Combined Channel Delta Apr 24, 2001	d Channe 001	J Delta	Descrio: Sampled:	Combined Channel Delta Apr 24, 2001	d Chan	el Delt	œ
Year Two - April 2001 Sampling Event	Lab ID: Matrix:	L20703-1 SALTWTRSED	SED	≥ تـ	Lab ID: 1	L20703-2 SAI TWTRSEN	Ę,		Lab ID: Motrix:	L20703-3	0		Lab ID	120703.4			
	% solids:	68.5	ļ	<u>%</u>	<u>u</u>	65.4	<u> </u>	*****	% Solids:	67.1			Matrix: % Solids:	SALIWIRSED 66.5	RSED		
Paramders	. Value	Qual - Dry v	al MDL RDL (Units	Value	Qual N	al MDL RDL - Dr Weight Basis	Units	Value	Qual	al MDL RI	RDL Units	S	Qual	MDL	RDL	Units
COMBINED LABS		•	ı			i				5	BO HARA	2		λη ·	 ury weight Basis 	asis	/
2-Chlorophenol		<mdl,g< td=""><td>23.4</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td></td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>ņ</td><td>23.8 ug/Kg</td><td>5</td><td><mdl,6< td=""><td>12</td><td>24.1</td><td>ua/Ka</td></mdl,6<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	23.4	ug/Kg		<mdl,g< td=""><td></td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>ņ</td><td>23.8 ug/Kg</td><td>5</td><td><mdl,6< td=""><td>12</td><td>24.1</td><td>ua/Ka</td></mdl,6<></td></mdl,g<></td></mdl,g<>		ug/Kg		<mdl,g< td=""><td>ņ</td><td>23.8 ug/Kg</td><td>5</td><td><mdl,6< td=""><td>12</td><td>24.1</td><td>ua/Ka</td></mdl,6<></td></mdl,g<>	ņ	23.8 ug/Kg	5	<mdl,6< td=""><td>12</td><td>24.1</td><td>ua/Ka</td></mdl,6<>	12	24.1	ua/Ka
2-Methylnaphthalene		₩D,	20 40.9 u	ug/Kg		ΥMDΓ	21 42.8	ug/Kg		MDL	22	41.7 ug/Kg	ā	VWDF	2	42.1	10/Ka
2-Methyphenol		ΨDΓ	55.5	ug/Kg		<mdl,g< th=""><th>29 58.1</th><th>ug/Kg</th><th></th><th><mdl,g< th=""><th>83</th><th>56.6 ug/Kg</th><th>0</th><th>√WDF</th><th>ଷ</th><th>57.1</th><th>57.1 uo/Ka</th></mdl,g<></th></mdl,g<>	29 58.1	ug/Kg		<mdl,g< th=""><th>83</th><th>56.6 ug/Kg</th><th>0</th><th>√WDF</th><th>ଷ</th><th>57.1</th><th>57.1 uo/Ka</th></mdl,g<>	83	56.6 ug/Kg	0	√WDF	ଷ	57.1	57.1 uo/Ka
2-Nitrophenol		₩DF	43.8	ug/Kg	•	<mdl,g< th=""><th>23 45.9</th><th>ug/Kg</th><th></th><th><mdl,g< th=""><th>ដ</th><th>44.7 ug/Kg</th><th>0</th><th>¢ΜDΓ</th><th>23</th><th>45.1</th><th>UQ/Ka</th></mdl,g<></th></mdl,g<>	23 45.9	ug/Kg		<mdl,g< th=""><th>ដ</th><th>44.7 ug/Kg</th><th>0</th><th>¢ΜDΓ</th><th>23</th><th>45.1</th><th>UQ/Ka</th></mdl,g<>	ដ	44.7 ug/Kg	0	¢ΜDΓ	23	45.1	UQ/Ka
4-Bromophenyl Phenyl Ether		₩DF	26.3	ig/Kg		<mdl< td=""><td></td><td>ug/Kg</td><td></td><td>MDL</td><td>to</td><td>26.8 ug/Kg</td><td>0</td><td><mdl< td=""><td>4</td><td>27.1</td><td>ua/Ka</td></mdl<></td></mdl<>		ug/Kg		MDL	to	26.8 ug/Kg	0	<mdl< td=""><td>4</td><td>27.1</td><td>ua/Ka</td></mdl<>	4	27.1	ua/Ka
4-Chlorophenyl Phenyl Ether		₩DF	8	ug/Kg		≺MDL		ug/Kg		¢ΜDΓ	\$	38.7 ug/Kg	D	VMDL	20	39.1	uo/Ka
4-Methylphenol		₩ V	46.7	g/Kg	ľ	<mdl,g< th=""><th>24 48.9</th><th>ug/Kg</th><th></th><th><mdl,g< th=""><th>4</th><th>47.7 ug/Kg</th><th></th><th>MDL</th><th>24</th><th>48.1</th><th>ua/Ka</th></mdl,g<></th></mdl,g<>	24 48.9	ug/Kg		<mdl,g< th=""><th>4</th><th>47.7 ug/Kg</th><th></th><th>MDL</th><th>24</th><th>48.1</th><th>ua/Ka</th></mdl,g<>	4	47.7 ug/Kg		MDL	24	48.1	ua/Ka
Acenaphthene		₩ W W	20.4	ug/Kg		ΨDΓ		ug/Kg		₩DF	ę	20.9 ug/Kg	-	-WDL	=	21.1	ua/Ka
Acenaphthylene		WDF	43.8	ug/Kg		ΨDΓ		45.9 ug/Kg		. ≺MDI.	23	44.7 ug/Kg		<mdl< td=""><td>ಣ</td><td>45.1</td><td>ua/Ka</td></mdl<>	ಣ	45.1	ua/Ka
Aniline	1	«MDL,×	55.5	ng/Kg	- 1	<mdl,x< td=""><td></td><td>ug/Kg</td><td></td><td><mdl,x< td=""><td>88</td><td>56.6 ug/Kg</td><td>-</td><td><mdl,x< td=""><td>59</td><td>57.1</td><td>ua/Ka</td></mdl,x<></td></mdl,x<></td></mdl,x<>		ug/Kg		<mdl,x< td=""><td>88</td><td>56.6 ug/Kg</td><td>-</td><td><mdl,x< td=""><td>59</td><td>57.1</td><td>ua/Ka</td></mdl,x<></td></mdl,x<>	88	56.6 ug/Kg	-	<mdl,x< td=""><td>59</td><td>57.1</td><td>ua/Ka</td></mdl,x<>	59	57.1	ua/Ka
Anthracane	8	유 교	11.7	ug/Kg	Ξ	<rdl< td=""><td>6.1 12.2</td><td>ug/Kg</td><td>7.3</td><td>^RDL</td><td>9</td><td>11.9 ug/Kg</td><td>7.2</td><td></td><td>9</td><td>1</td><td>uo/Ko</td></rdl<>	6.1 12.2	ug/Kg	7.3	^RDL	9	11.9 ug/Kg	7.2		9	1	uo/Ko
Benzo(a)anthracene	60.4		5.84	ug/Kg	4C.8		3.1 6.12		37.9		က	5.96 ug/Kg			6	1	ua/Ka
Benzo(a)pyrene	92.6		٣	gKg	61.5	ш	4.6 9.17	ug/Kg	56.8	ш	4.5	8.94 ug/Kg		ш	4.5	1	ua/Ka
Benzo(t)fluoranthens	142	ш	۳	g/Kg		Ε	4.6 9.17	ug/Kg	93.6	w		8.94 ug/Kg			4.5	,	IO/Ko
Benzo(g,h,i)perylene	24.8	ဖ	``	g/Kg		<rdl,g< td=""><td></td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td></td><td>23.8 ug/Kg</td><td></td><td>₹</td><td>12</td><td>1</td><td>uo/Ko</td></mdl,g<></td></rdl,g<>		ug/Kg		<mdl,g< td=""><td></td><td>23.8 ug/Kg</td><td></td><td>₹</td><td>12</td><td>1</td><td>uo/Ko</td></mdl,g<>		23.8 ug/Kg		₹	12	1	uo/Ko
Benzo(k)fluoranthene	56.2		۳۱	g/Kg	40.2		4.6 9.17	ug/Kg	34.1		4.5	8.94 ug/Kg	85	1	4.5	- 1	io/Ko
Benzoic Acid	299			g/Kg	122	၅		ug/Kg	162	၅	8.9	17.9 ug/Kg			6	- 1	In/Ka
Benzyl Alcohol		₩DF	-	g/Kg		≺MDL		18.3 ug/Kg		ΥMDΓ	6.9	17.9 ug/Kg		<mdl <<="" td=""><td>6</td><td></td><td>ua/Ka</td></mdl>	6		ua/Ka
Benzyl Butyl Phthalate	29.6		\neg	g/Kg	57.5		Ψ.	ug/Kg	22.1		8.3	17.9 ug/Kg	153		6		ua/Ka
Bis(2-Chloroethoxy)Methane		-WDF	٦	g/Kg		ΥMDΓ	1	ug/Kg		≺MDL		50.7 ug/Kg		√WDΓ	92		ua/Ka
Bis(2-Chloroethyl)Ether		<mdl,g< td=""><td>4</td><td>g/Kg</td><td>* </td><td><mdl,g< td=""><td></td><td></td><td></td><td><mdl,g< td=""><td></td><td>44.7 ug/Kg</td><td></td><td><mdl,g< td=""><td>83</td><td>45.1</td><td>ug/Ka</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	4	g/Kg	*	<mdl,g< td=""><td></td><td></td><td></td><td><mdl,g< td=""><td></td><td>44.7 ug/Kg</td><td></td><td><mdl,g< td=""><td>83</td><td>45.1</td><td>ug/Ka</td></mdl,g<></td></mdl,g<></td></mdl,g<>				<mdl,g< td=""><td></td><td>44.7 ug/Kg</td><td></td><td><mdl,g< td=""><td>83</td><td>45.1</td><td>ug/Ka</td></mdl,g<></td></mdl,g<>		44.7 ug/Kg		<mdl,g< td=""><td>83</td><td>45.1</td><td>ug/Ka</td></mdl,g<>	83	45.1	ug/Ka
Bis(2-Chloroisopropyi)Ether		VMDL.	4	g g	- 1	₹MDΓ	1	ug/Kg		≺MDL	75	44.7 ug/Kg		≺MDL	23	45.1	ug/Kg
Bis(2-Enylnexyl)Phthalate	349	B,L	~	9,48	246	B,L		ug/Kg	506	B,L	10	20.9 ug/Kg	.92	B,L	5	21.1	ug/Ka
Catteine	\$	ΔMDL,L	- 1	g/kg		<mdl,l< td=""><td></td><td>18.3 ug/Kg</td><td></td><td><mdl,l< td=""><td>8.9</td><td>17.9 ug/Kg</td><td></td><td><mdl,l< td=""><td>တ</td><td>18</td><td>ug/Kg</td></mdl,l<></td></mdl,l<></td></mdl,l<>		18.3 ug/Kg		<mdl,l< td=""><td>8.9</td><td>17.9 ug/Kg</td><td></td><td><mdl,l< td=""><td>တ</td><td>18</td><td>ug/Kg</td></mdl,l<></td></mdl,l<>	8.9	17.9 ug/Kg		<mdl,l< td=""><td>တ</td><td>18</td><td>ug/Kg</td></mdl,l<>	တ	18	ug/Kg
Carpazoe	0 0	۲ کارا	١,	g kg		&B.		ug/Kg		₩DĽ	2	20.9 ug/Kg		≺MDL	11	21.1	ug/Kg
Chrysere	81.9	u 3		9 3	621	ш	- 1	ng/Kg	64	ш	Í	11.9 ug/Kg	42	ш	ဖ	12 (ug/Kg
Discourse Northwest		לאור. היים היים היים היים היים היים היים היים		0 kg		WDL.	- 1	g/g		₩DΓ	- 1	41.7 ug/Kg		<mdl< td=""><td>22</td><td>42.1</td><td>ug/Kg</td></mdl<>	22	42.1	ug/Kg
Discrete day 1) anumacane		AMDL AMDL	- 1	By 6		WD.	1	ug/Kg		ΨDΓ	- 1	20.9 ug/Kg		<mdl< td=""><td>Ξ</td><td>21.1</td><td>ug/Kg</td></mdl<>	Ξ	21.1	ug/Kg
Dipenzagnari		AMDI.	4 ,	D i		WD.	- 1	ng/Kg		VMDL	2	41.7 ug/Kg		<mdl< td=""><td>21</td><td>42.1 L</td><td>ug/Kg</td></mdl<>	21	42.1 L	ug/Kg
Discothal Detholoto		AMD!	- 1	g kg		WDI.		g/g		<mdl< td=""><td></td><td>17.9 ug/Kg</td><td></td><td>≺MDL</td><td>6</td><td>18</td><td>ug/Kg</td></mdl<>		17.9 ug/Kg		≺MDL	6	18	ug/Kg
Directly Titulatate	9	Jage	. ا ر	g :	- 1	-WDL	- 1	ug/Kg		₩DF		32.8 ug/Kg		ΥMDΓ	17	33.1 ug/Kg	g/Kg
CI-N-Buy Phthalate	46.9	n	14.6	g/Kg	436	œ	-	15.3 ug/Kg	32.6	œ		14.9 ug/Kg	30.5	80	7.5	15 u	ug/Kg
U-N-Cayl Phinalate		WD.	23.4	ng/Kg	- 1	-WDF		24.5 ug/Kg		<mdl< td=""><td></td><td>23.8 ug/Kg</td><td></td><td>≺MDF</td><td>12</td><td>24.1 u</td><td>ug/Ka</td></mdl<>		23.8 ug/Kg		≺MDF	12	24.1 u	ug/Ka
riuorannene	162	<u>"</u>	23.4	8	428	L'E		24.5 ug/Kg	110	L,E	12 2	23.8 ug/Kg	5	L E	12	24.1 ug/Kg	g/Kg
Fluorene			88	ug/Kg		<mdl< td=""><td>20 39.8</td><td>39.8 ug/Kg</td><td></td><td>≺MDL</td><td>15</td><td>38.7 ug/Kg</td><td></td><td>«MDί</td><td>20</td><td>39.1 u</td><td>ua/Ka</td></mdl<>	20 39.8	39.8 ug/Kg		≺MDL	15	38.7 ug/Kg		«MDί	20	39.1 u	ua/Ka
Hexachbrobenzene		ļ.	1.94	S S		φDΓ.		2.03 ug/Kg		≺MDL	0.98	1.98 ug/Kg		<mdl< td=""><td>0.99</td><td></td><td>uo/Ko</td></mdl<>	0.99		uo/Ko
Hexachbrobutadiene		<mdl,g< td=""><td>2.19</td><td>ug/Kg</td><td>▼ </td><td><mdl,g< td=""><td></td><td>2.29 ug/Kg</td><td></td><td><mdl,g< td=""><td></td><td>2.24 ug/Kg</td><td></td><td><mdl,g< td=""><td>=</td><td>2.26 ug/Kg</td><td>g/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	2.19	ug/Kg	▼	<mdl,g< td=""><td></td><td>2.29 ug/Kg</td><td></td><td><mdl,g< td=""><td></td><td>2.24 ug/Kg</td><td></td><td><mdl,g< td=""><td>=</td><td>2.26 ug/Kg</td><td>g/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>		2.29 ug/Kg		<mdl,g< td=""><td></td><td>2.24 ug/Kg</td><td></td><td><mdl,g< td=""><td>=</td><td>2.26 ug/Kg</td><td>g/Kg</td></mdl,g<></td></mdl,g<>		2.24 ug/Kg		<mdl,g< td=""><td>=</td><td>2.26 ug/Kg</td><td>g/Kg</td></mdl,g<>	=	2.26 ug/Kg	g/Kg
Hexachbroetnane		<mdl,g< td=""><td>22 43.8 ug</td><td>ug/Kg</td><td>▼ </td><td>«MDL,G</td><td>23 45.9</td><td>45.9 ug/Kg</td><td></td><td><mdl,g< td=""><td>22 4</td><td>44.7 ug/Kg</td><td></td><td><mdl,g< td=""><td>23</td><td>45.1 u</td><td>ua/Ka</td></mdl,g<></td></mdl,g<></td></mdl,g<>	22 43.8 ug	ug/Kg	▼	«MDL,G	23 45.9	45.9 ug/Kg		<mdl,g< td=""><td>22 4</td><td>44.7 ug/Kg</td><td></td><td><mdl,g< td=""><td>23</td><td>45.1 u</td><td>ua/Ka</td></mdl,g<></td></mdl,g<>	22 4	44.7 ug/Kg		<mdl,g< td=""><td>23</td><td>45.1 u</td><td>ua/Ka</td></mdl,g<>	23	45.1 u	ua/Ka
																	0

	<i>(</i> 0		5	0	0	0	0	0	6	0	60	0	0	
m.	Units		y,	y S	42.1 ug/Kg	48.1 ug/Kg	60.2 ug/Kg	27.1 ug/Kg	₽ X	15 ug/Kg	12 ug/Kg	27.1 ug/Kg	ug/Kg	
Deltr	RDL asis		14 27.1 ug/Kg	57.1 ug/Kg	42.1	48.1	60.2	27.1	60.2 ug/Kg	15	12	27.1	12	
NFK502 Combined Channel Delta Apr 24, 2001 L20703-4 SALTWTRSED 66.5	al MDL RE -Dry Weight Basis		4	53	77	24	စ္တ	4	စ္က	7.5	ဖ	4	9	
2 ned C 2001 74 VTRS	Dry We				ဖြ		ဗ					ဖြ		
NFK5(2 Combined Chai Apr 24, 2001 L20703-4 SALTWTRSED	Qua Po		Ş MD	₩P	<mdl,g< td=""><td>Å MDL</td><td><mdl<sub>G</mdl<sub></td><td>₽</td><td>\$ MD</td><td>Ş MD</td><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<>	Å MDL	<mdl<sub>G</mdl<sub>	₽	\$ MD	Ş MD	ш	<mdl,g< td=""><td>ш</td><td></td></mdl,g<>	ш	
	Φ						ľ				31.6	ľ	50.7	
Locator: Descrp: Sampled: Lab ID: Matrix % Solids:	Value												-	
	Units		X _G)/Kg	J/Kg	λKg	ξ	χg	χg	δŽ	ξ	Ϋ́Ğ	ş	
elta			26.8 ug/Kg	56.6 ug/Kg	41.7 ug/Kg	47.7 ug/Kg	59.6 ug/Kg	26.8 ug/Kg	59.6 ug/Kg	14.9 ug/Kg	11.9 ug/Kg	26.8 ug/Kg	11.9 ug/Kg	
. Jeur	RDL. Basis		13 26	28 56						l i	6 11	١.	11	
NFK502 Combined Channel Delta Apr 24, 2001 L20703-3 SALTWTRSED 67.1	al MCL RC - Dry Weight Basis		=	32	77	24	င္က	2	30	7.5	9	3	9	
NFK502 Combined Char Apr 24, 2001 L20703-3 SALTWTRSED 67.1	Qual - _D		<u>ک</u>	<mdl< td=""><td><mdl,g< td=""><td><mdf< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl< td=""><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl,g<></td></mdf<></td></mdl,g<></td></mdl<>	<mdl,g< td=""><td><mdf< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl< td=""><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl,g<></td></mdf<></td></mdl,g<>	<mdf< td=""><td><mdl,g< td=""><td>≺MDL</td><td><mdl< td=""><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl,g<></td></mdf<>	<mdl,g< td=""><td>≺MDL</td><td><mdl< td=""><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl,g<>	≺MDL	<mdl< td=""><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl<>	<mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<>	ш	<mdl,g< td=""><td>ш</td><td></td></mdl,g<>	ш	
	0		22 <rdl< td=""><td>⊽</td><td>₹</td><td>⊽</td><td>₹</td><td>⊽</td><td>₹</td><td>₹</td><td>39</td><td>₹</td><td></td><td></td></rdl<>	⊽	₹	⊽	₹	⊽	₹	₹	39	₹		
Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	Value		2								3		79.1	
Loc San San Lab Mat			_		_				_					
	Units		14 27.5 ug/Kg	58.1 ug/Kg	42.8 ug/Kg	48.9 ug/Kg	61.2 ug/Kg	27.5 ug/Kg	61.2 ug/Kg	15.3 ug/Kg	12.2 ug/Kg	27.5 ug/Kg	12.2 ug/Kg	
<u> </u>	RDL asis		27.5	58.1	42.8	48.9	61.2	27.5	61.2	15.3	12.2	27.5	12.2	
NFK501 Norfolk CSO Channel Apr 24, 2001 L20703-2 SALTWTRSED 65.4			4	53	21	24	31	14	31	9.7	6.1	14	6.1	
74 CCSO 7, 2001 3-2 VIRSI	Qual MDL - Dy Weight B				o.	_	တ္	_		ق		o,		
NFK501 Norfolk CSO Ci Apr 24, 2001 L20703-2 SALTWTRSED	Qual.		21 <rdl< td=""><td>≺MDĽ</td><td><mdl,g< td=""><td><mdl< td=""><td><mdl,g< td=""><td>₹MDF</td><td>ΥMDΓ</td><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl,g<></td></rdl<>	≺MDĽ	<mdl,g< td=""><td><mdl< td=""><td><mdl,g< td=""><td>₹MDF</td><td>ΥMDΓ</td><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<></td></mdl,g<>	<mdl< td=""><td><mdl,g< td=""><td>₹MDF</td><td>ΥMDΓ</td><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl<>	<mdl,g< td=""><td>₹MDF</td><td>ΥMDΓ</td><td><mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<></td></mdl,g<>	₹MDF	ΥMDΓ	<mdl,g< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl,g<>	ш	<mdl,g< td=""><td>ш</td><td></td></mdl,g<>	ш	
	2		5								43.8		95.7	
Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	Value													
	Units	*********	g/Kg	g/Kg	g/Kg	g/Kg	g/Kg	g/Kg	g/Kg	g/Kg	g/Kg	g/Kg	g/Kg	
78			26.3 ug/Kg	55.5 ug/Kg	40.9 ug/Kg	46.7 ug/Kg	58.4 ug/Kg	26.3 ug/Kg	58.4 ug/Kg	14.6 ug/Kg	11.7 ug/Kg	26.3 ug/Kg	11.7 ug/Kg	
NFK501 Norfolk CSO Channel Apr 24, 2001 L20703-1 SALTWTRSED	MDL RDL Ory WeightBasis		13 2	28 55	20 4	23 4	23	13 2	S S	7.3 1	5.8 1	13 2	5.8 1	
NFK501 Norfolk CSO Cł Apr 24, 2001 L20703-1 SALTWTRSED	MDL y Weight		•					1	,	7	2		2	
NFK501 Nofolk CSO Apr 24, 2001 L20703-1 SALTWTRSI	Oual Q			<mdl< td=""><td><mdl,g< td=""><td><mdl< td=""><td><ndl,g< td=""><td>≺MDL</td><td><mdl< td=""><td><mdl< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl<></td></mdl<></td></ndl,g<></td></mdl<></td></mdl,g<></td></mdl<>	<mdl,g< td=""><td><mdl< td=""><td><ndl,g< td=""><td>≺MDL</td><td><mdl< td=""><td><mdl< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl<></td></mdl<></td></ndl,g<></td></mdl<></td></mdl,g<>	<mdl< td=""><td><ndl,g< td=""><td>≺MDL</td><td><mdl< td=""><td><mdl< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl<></td></mdl<></td></ndl,g<></td></mdl<>	<ndl,g< td=""><td>≺MDL</td><td><mdl< td=""><td><mdl< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl<></td></mdl<></td></ndl,g<>	≺MDL	<mdl< td=""><td><mdl< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl<></td></mdl<>	<mdl< td=""><td>ш</td><td><mdl,g< td=""><td>ш</td><td></td></mdl,g<></td></mdl<>	ш	<mdl,g< td=""><td>ш</td><td></td></mdl,g<>	ш	
			33.6	v	₹	٧	₹	'	٧	\ 	65.3	٧	125	
Lozator: Descrip: Sampled: La>ID: Matrix: % Solids:	Value		8								39		1	
% X L S O C														
PROJECT: 423056-160 Norfolk CSO Sedimant Remediation Five-Year Monitoring Program Year Tvo - April 2001 Sampling Event	Parameters	COMBNED LABS	Indeno(1,2,3-Cd)Pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodimethylamine	N-Nitrosodi-N-Propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	* Not converted to dry weight basis for this parameter

		SOCUL			Locator:	NFK503			Locator:	NFK504			Locator:	MFK504		
Norfolk CSO Sediment Remediation	Descrip:	Boeing (Boeing Storm Diain Channel	hannel	Descrip:	Boeing Sor	Boeing Sorm Drain Channel	annel	Descrip:	Upriver Reference	ference		Descrip:	Upriver Reference	ference	
Five-Year Monitoring Program	Sanpled:	Apr 24, 2001	2001		Sampled:	Apr 24, 2001	-		Sampled:	Apr 24, 2001	01		Sampled:	Apr 24, 2001	01	٠
Tedi 190 - April 2001 Samping Eveni	Matrix:	SALTWTRSED	RSED		Matrix:	SALTWTRSED). OEC		Matrix:	SALTWTFSED	SED		Matrix:	SALTWTRSED	SED	
	% Solids:	74.7			% Solids	74.1			% Solids:	52.7			% Solids:	60.1		
Parameters	Value	Qual . Drv	at MDL RDL	L Units	Value	Qual	MDL RE- Dry Weight Basis	RDL Units	Value	Qual	Qual MDL RDL	OL Units	Value	Qual	MDL RDL	Units
COMBINED LABS		ı						2		3	sieger meleta f			-	y weignt basis	
M=CV ASTM D422																
Clay *	0.65		0.1	%	90		0.1	%	4.6		0.1	%	6.5	10	0.1	%
Gravel *	0.98	ж Е	0.1	%	-	ш	0.1	%	0.46	ш	0.1	%	0.31	ш	0.1	%
p+0.00 *	4.9		0.1	%	4.1		0.1	%	2.8		0.1	%	2.1		0.1	8
p+1.00 *	28.6		0.1	%	321		0.1	%	21.7		0.1	%	15.4	_	0.1	%
p+10.0 *	0.14	_	0.1	%		√WDF	0.1	%	0.85		0.1	%	-		0.1	8
p+10.0(more than) *	0.41		0.1	%	0.36		0.1	%	2.1		0.1	%	3.3		0.1	8
p+2.00 +	55.7		0.1	%	55		0.1	%	43.3		0.1	%	30.4		0.1	8
p+3.00 '	5.9		0.1	%	52		0.1	%	6.8		0.1	%	6.5		0.1	%
p+4.00,	0.75		0.1	%	25.0		0.1	%	6.1		0.1	%	=		0.1	%
p+5.00 '	1.8	_	0.1	%	1		0.1	%	4.2		0.1	%	14.2		0.1	%
p+6.00 '	0.27		0.1	%	9.0		0.1	%	4.8		0.1	%	6.3		0.1	%
p+7.00 '	0.25		0.1	%	90		0.1	%	3.1		0.1	%	4.2		0.1	%
p+8.00 '	0.2	~	0.1	%	0.7		0.1	%	2.3		0.1	%	3		0.1	%
, 00·6+d	0.1		0.1	%	90		0.1	%	1.6		0.1	%	2.2		0.1	%
p-1.00*	0.98		0.1	%	1		0.1	%	0.46		0.1	%	0.31		0.1	%
p-2.00 *		<mdl< td=""><td>0.1</td><td>%</td><td></td><td><wdf< td=""><td>0.1</td><td>%</td><td></td><td><mdl< td=""><td>0.1</td><td>%</td><td>0.17</td><td></td><td>0.1</td><td>%</td></mdl<></td></wdf<></td></mdl<>	0.1	%		<wdf< td=""><td>0.1</td><td>%</td><td></td><td><mdl< td=""><td>0.1</td><td>%</td><td>0.17</td><td></td><td>0.1</td><td>%</td></mdl<></td></wdf<>	0.1	%		<mdl< td=""><td>0.1</td><td>%</td><td>0.17</td><td></td><td>0.1</td><td>%</td></mdl<>	0.1	%	0.17		0.1	%
p-2.00(less than) *		≺MDF	0.1	%		JQW>	0.1	%		≺MDL	0.1	%		<mdl< td=""><td>0.1</td><td>%</td></mdl<>	0.1	%
Sand *	95.8	_	0.1	%	696		0.1	%	9.08		0.1	%	65.4		0.1	%
* #S	2.5		0.1	%	1.5		0.1	%	14.4		0.1	%	27.8		0.1	%
M-CV EPA9060-PSEP96 03-04-002-001)																
Total Organic Carbon	2770		670 1340	0 mg/Kg	36(0		670	1350 mg/Kg	15600		950 19	1900 mg/Kg	9080		830 166	1660 mg/Kg
M=CV SM2540-G (03-01-007-001)											ł					
Total Sclids *	74.7		0.005 0.01	1 %	741		0.005	0.01 %	52.7		0.005 0.01	%	60.1		0.005 0.01	%
M-ES NOVE																
Sampcordx1 *	1278555	2		ff					1278628			¥				
Sampccordx2 *	1278547			¥	:				1278624			#				
Sampccordx3 *	1278545	9		¥					1278622			#				
Sampcordy1 *	190175			Ħ					190072			¥				
Sampcordy2 *	190181	_		Ŧ					190077			#				
Sampcordy3 *	190176			¥					190077			#				
Sample Depth *				ε	_			ε	2			ε	2			ε
Sample Start Time *	1116	•		È	1116			Ē	1210			È	1210	-		E
Sampling Method	26816.6	3		none	27033.738			none	38011.385			none	33331.115			none
Sediment Sampling Depth *	11			æ	#			ਙ	16			동	16		Ė	Ę
Sediment Sampling Range *	0-2cm			none	0-10 cm			none	0-2 cm			none	0-10 cm			none
Sediment Type	30N20			none	30N20			none	23W21			none	32W21			none
Tidal Condition	w			none	ш			none	S			none	s			none

Data Management and Analysis Section Comprehensive Report #10136

		King Cou	Sount	, Envi⊩	ronmer	inty Environmental Lab Analytical Report	An C	alytic	al Re	port							
PROJECT: 423056-160	Locator:	NFK503		Locator:	NFK503			Locator:	NFK504			<u>~</u>	-ocator:	NFK504			
Norfolk CSO Sediment Remediation	Descrip:	Boeing Storm Diain Channel	ain Channel	Descrip:	Boeing Som	Boeing Storm Drain Channel		Descrip:	Upriver Reference	eference		ğ	Descrip:	Upriver Refe	rence		
Five-Year Monitoring Program	Sampled:	Apr 24, 2001		Sampled /	Apr 24, 2001			Sampled: Apr 24, 2001	Apr 24, 2	6		Sar	mpled:	Sampled: Apr 24, 2001	_		
Year Two - April 2001 Sampling Event	LabID:	L20703-5		Lab ID:	L20703-6			Lab ID:	L20703-7			Lat	ab ID:	120703-8			
	Matrix:	SALTWTRSED		Matrix:	SALTWTRSED	Ü		Matrix:	SALTWTRSED	RSED		Mai	fatrix:	SALTWTRSED	<u> </u>		
	% Solids:	74.7		% Solids:	74.1			% Solids:	52.7			×2	% Solids:	60.1			
Parameters	Value	Qual MDL RDL - Dry Weight Basis	RDL Units	Value	Oual	Qual MDL RDL Units Value	Units	Value		Qual MDL RDL Units Value	RDL asis	Units	/alue	Qual - Dry	Qual MDL RDL Units	. א א	Jnits
COMBINED LABS														•	,		
Tide Height *			#	Ì			¥	-0.3				#	-0.3				#
										-						İ	

PROJECT: 423056-160	Locator	NFK503			Costor	NFK503			III ocator	NFK504			ll orator	NEKSOA		
Norfolk CSO Sediment Remediation	Descrip:	Boeing 5	Storm Die	Boeing Storm Drain Channel	Descrip:	Boeing Storm Drain Channel	m Drain (Shannel	Descrip:	Upriver Reference	eference		Descrip:	Upriver Reference	ference	
Frive-Year Monitoring Program Year Two - April 2001 Sampling Event	sampled: Lab ID: Matrix:	Apr 24, 2001 L.20703-5 SALTWTRSED	5 TRSED		Sampled Lab ID: Matrix:	Apr 24, 2001 L20703-6 SAI TWTRSFD	_ 6		Sampled: Lab ID: Matrix:	Apr 24, 2001 L20703-7 SAI TWTESED	M1 SFD		Sampled: Lab ID: Matriv:	Apr 24, 2001 L20703-8 SAI TAATBSED	01 GED	
	% Solids:	74.7			% Solids:	74.1) .		% Solids:	52.7			% Solids:	8.1	1	
Parameters	Value	Qual	MDL	RDL Units	Value	Qual	MDL RE	RDL Units	s Value	Qual	MDL	RDL Units	Value	Qual	MDL	RDL Units
COMBINED LABS		5	y weight b	200		7	Jry wergin t	Sasis	-	ī	- Ly weignt basis	Sisi		Ď,	- Dry Weight Basis	sa Sa
M=MT EPA 245.5 (06-01-004-003)																
Mercury Total, CVAA		<md[< th=""><th>0.025</th><th>0.26 mg/Kg</th><th>0.1</th><th><rdl< th=""><th>0.026</th><th>0.026 0.262 mg/Kg</th><th>cg 0.072</th><th><rdl< th=""><th>0.036</th><th>0.036 0.368 mg/Kg</th><th>0.038</th><th>^RDL</th><th>0.033 0.329 mg/Kg</th><th>.329 m</th></rdl<></th></rdl<></th></md[<>	0.025	0.26 mg/Kg	0.1	<rdl< th=""><th>0.026</th><th>0.026 0.262 mg/Kg</th><th>cg 0.072</th><th><rdl< th=""><th>0.036</th><th>0.036 0.368 mg/Kg</th><th>0.038</th><th>^RDL</th><th>0.033 0.329 mg/Kg</th><th>.329 m</th></rdl<></th></rdl<>	0.026	0.026 0.262 mg/Kg	cg 0.072	<rdl< th=""><th>0.036</th><th>0.036 0.368 mg/Kg</th><th>0.038</th><th>^RDL</th><th>0.033 0.329 mg/Kg</th><th>.329 m</th></rdl<>	0.036	0.036 0.368 mg/Kg	0.038	^RDL	0.033 0.329 mg/Kg	.329 m
M=MT EPA3050A/8010B ()6-02-004-002)								- 1								
Aluminum, Total, ICP	10400		6.7	- 1	11000		6.5	- 1	14300		9.5	47.2 mg/Kg	13300	۔۔	8.5	42.1 mg/Kg
Arsenic, Total, ICP		- 1	3.3	16.6 mg/Kg			3.2	16.3 mg/K ₃		Ì	4.7	23.5 mg/Kg		<mdl< th=""><th>4.2</th><th>21 mg/Kg</th></mdl<>	4.2	21 mg/Kg
Beryllium, Total, ICP	0.25	- 1	0.067	0.067 0.332 mg/Kg	0.28		0.065	0.065 0.327 mg/Kg	(3) 0.38	^RDL	0.095	0.472 mg/Kg	0.37	<rdl< th=""><th>0.085 0</th><th>0.421 mg/Kg</th></rdl<>	0.085 0	0.421 mg/Kg
Cadmium, Total, ICP		<mdl< th=""><th>0.2</th><th>$\mathbf{\mathcal{L}}$</th><th></th><th><mdl< th=""><th>0.2</th><th>0.2 0.978 mg/K₃</th><th>ক্</th><th>√WDF</th><th>0.28</th><th>1.42 mg/Kg</th><th></th><th><mdl< th=""><th>0.25</th><th>1.26 mg/Kg</th></mdl<></th></mdl<></th></mdl<>	0.2	$\mathbf{\mathcal{L}}$		<mdl< th=""><th>0.2</th><th>0.2 0.978 mg/K₃</th><th>ক্</th><th>√WDF</th><th>0.28</th><th>1.42 mg/Kg</th><th></th><th><mdl< th=""><th>0.25</th><th>1.26 mg/Kg</th></mdl<></th></mdl<>	0.2	0.2 0.978 mg/K ₃	ক্	√WDF	0.28	1.42 mg/Kg		<mdl< th=""><th>0.25</th><th>1.26 mg/Kg</th></mdl<>	0.25	1.26 mg/Kg
Chromium, Total, ICP	13.9		0.33		12		0.32	1.63 mg/Kg	21.1		0.47	2.35 mg/Kg	17.8		0.42	2.1 mg/Kg
Copper, Total, ICP	11.4		0.27	1.33 mg/Kg	129		0.26	1.3 mg/Kg	24.9		0.38	1.89 mg/Kg	18.8		0.33	1.68 mg/Kg
Iron, Total, ICP	18200	ŋ	3.3	1	194(0		3.2	16.3 mg/Kg	25800	O	4.7	23.5 mg/Kg	2	9		21 mg/Kg
Lead, Total, ICP	7.4	<rdl< td=""><td>2</td><td>9.95 mg/Kg</td><td></td><td><rdl< td=""><td>2</td><td>9.78 mg/Kg</td><td>18</td><td></td><td>2.8</td><td>14.2 mg/Kg</td><td>13.8</td><td></td><td>ł</td><td>12.6 mg/Kg</td></rdl<></td></rdl<>	2	9.95 mg/Kg		<rdl< td=""><td>2</td><td>9.78 mg/Kg</td><td>18</td><td></td><td>2.8</td><td>14.2 mg/Kg</td><td>13.8</td><td></td><td>ł</td><td>12.6 mg/Kg</td></rdl<>	2	9.78 mg/Kg	18		2.8	14.2 mg/Kg	13.8		ł	12.6 mg/Kg
Mangansse, Total, ICP	234		0.13	0.13 0.663 mg/Kg			0.13	0.653 mg/Kg	(g) 429		0.19	0.943 mg/Kg	451		0.17	0.84 mg/Kg
Nickel, Total, ICP	11.8		1.3	- 1	3 127		1.3		9.71		1.9	9.43 mg/Kg	14.2		1.7	8.4 mg/Kg
Selenium, Total, ICP		≺MDF	3.3			-WDF	3.2	16.3 mg/Kg	9	≺MDF	4.7	23.5 mg/Kg		-WDF	4.2	21 mg/Kg
Silver, Total, ICP		«MDL	0.27	1.33 mg/Kg		<mdl< td=""><td>0.26</td><td>1.3 mg/Kg</td><td>ō,</td><td>JQW></td><td>0.38</td><td>1.89 mg/Kg</td><td></td><td>≺MDL</td><td>0.33</td><td>1.68 mg/Kg</td></mdl<>	0.26	1.3 mg/Kg	ō,	JQW>	0.38	1.89 mg/Kg		≺MDL	0.33	1.68 mg/Kg
Thallium, Total, ICP		√WDΓ	13	66.3 mg/Kg		<mdl< td=""><td>13</td><td>65.3 mg/Kg</td><td>.59</td><td>~WDI</td><td>19</td><td>94.3 mg/Kg</td><td></td><td>√WDΓ</td><td>17</td><td>84 mg/Kg</td></mdl<>	13	65.3 mg/Kg	. 59	~WDI	19	94.3 mg/Kg		√WDΓ	17	84 mg/Kg
Zinc, Total, ICP	43.4		0.33	1.66 mg/Kg	464		0.32	1.63 mg/Kg	.9 68.3		0.47	2.35 mg/Kg	9.09		0.42	2.1 mg/Kg
M=OR EPA 3550B/8082 (7-3-03-002)																
Aroclor 1016		≺MDL	5.6	11.2 ug/Kg		<wdl< td=""><td>5.7</td><td>11.2 ug/Kg</td><td>£.</td><td><mdl< td=""><td>8</td><td>15.8 ug/Kg</td><td></td><td>≺MDL</td><td>7</td><td>13.9 ug/Kg</td></mdl<></td></wdl<>	5.7	11.2 ug/Kg	£.	<mdl< td=""><td>8</td><td>15.8 ug/Kg</td><td></td><td>≺MDL</td><td>7</td><td>13.9 ug/Kg</td></mdl<>	8	15.8 ug/Kg		≺MDL	7	13.9 ug/Kg
Aroclor 1221	-	√MDľ	5.6	11.2		<mdi_< td=""><td>5.7</td><td>11.2 ug/Kg</td><td>0</td><td><mdl< td=""><td>8</td><td>15.8 ug/Kg</td><td></td><td>-WDĽ</td><td>7</td><td>13.9 ug/Kg</td></mdl<></td></mdi_<>	5.7	11.2 ug/Kg	0	<mdl< td=""><td>8</td><td>15.8 ug/Kg</td><td></td><td>-WDĽ</td><td>7</td><td>13.9 ug/Kg</td></mdl<>	8	15.8 ug/Kg		-WDĽ	7	13.9 ug/Kg
Aroclor 1232		ΥMDΓ	5.6	11.2		<mdľ.< td=""><td>5.7</td><td>11.2 ug/Kg</td><td>G</td><td>≺MDL</td><td>8</td><td>15.8 ug/Kg</td><td></td><td>≺MDL</td><td></td><td>13.9 ug/Kg</td></mdľ.<>	5.7	11.2 ug/Kg	G	≺MDL	8	15.8 ug/Kg		≺MDL		13.9 ug/Kg
Aroclor 1242		<mdl< td=""><td>5.6</td><td>11.2</td><td></td><td><mdl< td=""><td>5.7</td><td>11.2 ug/Kg</td><td>Ca</td><td><mdl< td=""><td>8</td><td>15.8 ug/Kg</td><td></td><td>√WDF</td><td>_</td><td>13.9 ug/Kg</td></mdl<></td></mdl<></td></mdl<>	5.6	11.2		<mdl< td=""><td>5.7</td><td>11.2 ug/Kg</td><td>Ca</td><td><mdl< td=""><td>8</td><td>15.8 ug/Kg</td><td></td><td>√WDF</td><td>_</td><td>13.9 ug/Kg</td></mdl<></td></mdl<>	5.7	11.2 ug/Kg	Ca	<mdl< td=""><td>8</td><td>15.8 ug/Kg</td><td></td><td>√WDF</td><td>_</td><td>13.9 ug/Kg</td></mdl<>	8	15.8 ug/Kg		√WDF	_	13.9 ug/Kg
Aroclor 1248	1190		5.6	11.2			5.7	11.2 ug/Kg	16.8		ω	15.8 ug/Kg	11	-RDL	7	13.9 ug/Kg
Aroclor 1254	685		5.6	11.2	4 16		5.7		25.4		80	15.8 ug/Kg	19.5		, ,	13.9 ug/Kg
Aroclor 1260		√MDĽ	5.6	11.2 ug/Kg		√WDL	5.7	11.2 ug/Kg	6.	√MDL	ω	15.8 ug/Kg		<mdl< td=""><td>, ,</td><td>13.9 ug/Kg</td></mdl<>	, ,	13.9 ug/Kg
M=OR EPA 3550B/8270C(7-3-01-004)	į			- 1												
1,2,4-Trchlorobenzene		<mdl,g< td=""><td>l</td><td></td><td></td><td><mdl,g< td=""><td>0.35</td><td></td><td>Çı.</td><td><mdl,g< td=""><td>0.49</td><td>1.01 ug/Kg</td><td></td><td>¢MDL,G</td><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	l			<mdl,g< td=""><td>0.35</td><td></td><td>Çı.</td><td><mdl,g< td=""><td>0.49</td><td>1.01 ug/Kg</td><td></td><td>¢MDL,G</td><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<></td></mdl,g<>	0.35		Çı.	<mdl,g< td=""><td>0.49</td><td>1.01 ug/Kg</td><td></td><td>¢MDL,G</td><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<>	0.49	1.01 ug/Kg		¢MDL,G	0.43 0.	0.882 ug/Kg
1,2-Dictlorobenzene		<mdl,g< td=""><td>٥ </td><td></td><td></td><td><mdl,g< td=""><td>0.35</td><td>0.715</td><td>Q:</td><td><mdl,g< td=""><td>0</td><td>1.01 ug/Kg</td><td></td><td>«MDL,G</td><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	٥			<mdl,g< td=""><td>0.35</td><td>0.715</td><td>Q:</td><td><mdl,g< td=""><td>0</td><td>1.01 ug/Kg</td><td></td><td>«MDL,G</td><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<></td></mdl,g<>	0.35	0.715	Q:	<mdl,g< td=""><td>0</td><td>1.01 ug/Kg</td><td></td><td>«MDL,G</td><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<>	0	1.01 ug/Kg		«MDL,G	0.43 0.	0.882 ug/Kg
1,2-Diptenythydrazire		-MDL	- 1	_		<mdl,g< td=""><td>13</td><td></td><td>Oi Oi</td><td><mdl,g< td=""><td>- 1</td><td>38 ug/Kg</td><td></td><td><mdl,g< td=""><td>17 3</td><td>33.3 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	13		Oi Oi	<mdl,g< td=""><td>- 1</td><td>38 ug/Kg</td><td></td><td><mdl,g< td=""><td>17 3</td><td>33.3 ug/Kg</td></mdl,g<></td></mdl,g<>	- 1	38 ug/Kg		<mdl,g< td=""><td>17 3</td><td>33.3 ug/Kg</td></mdl,g<>	17 3	33.3 ug/Kg
1,3-Dichlorobenzene		<mdl,g< td=""><td></td><td>_ [</td><td></td><td><mdl,g< td=""><td>0.35</td><td>0.715 ug/Kg</td><td>O.</td><td><mdl,g< td=""><td>0.49</td><td>1.01 ug/Kg</td><td></td><td><mdl,g< td=""><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>		_ [<mdl,g< td=""><td>0.35</td><td>0.715 ug/Kg</td><td>O.</td><td><mdl,g< td=""><td>0.49</td><td>1.01 ug/Kg</td><td></td><td><mdl,g< td=""><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	0.35	0.715 ug/Kg	O.	<mdl,g< td=""><td>0.49</td><td>1.01 ug/Kg</td><td></td><td><mdl,g< td=""><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<></td></mdl,g<>	0.49	1.01 ug/Kg		<mdl,g< td=""><td>0.43 0.</td><td>0.882 ug/Kg</td></mdl,g<>	0.43 0.	0.882 ug/Kg
1,4-Dictiorobenzene		<mdl,g< td=""><td>- 1</td><td></td><td></td><td><mdl,g< td=""><td>0.18</td><td>0.356 ug/Kç</td><td>(11</td><td><mdl,g< td=""><td>0.25</td><td>0.501 ug/Kg</td><td></td><td>-MDL,G</td><td>0.22 0.</td><td>0.439 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	- 1			<mdl,g< td=""><td>0.18</td><td>0.356 ug/Kç</td><td>(11</td><td><mdl,g< td=""><td>0.25</td><td>0.501 ug/Kg</td><td></td><td>-MDL,G</td><td>0.22 0.</td><td>0.439 ug/Kg</td></mdl,g<></td></mdl,g<>	0.18	0.356 ug/Kç	(11	<mdl,g< td=""><td>0.25</td><td>0.501 ug/Kg</td><td></td><td>-MDL,G</td><td>0.22 0.</td><td>0.439 ug/Kg</td></mdl,g<>	0.25	0.501 ug/Kg		-MDL,G	0.22 0.	0.439 ug/Kg
2,4,5-Trchloropheno		<mdl,g< td=""><td></td><td>32.1 ug/Kg</td><td></td><td><mdl,g< td=""><td>16</td><td>32.4 ug/Kg</td><td>,,,</td><td><mdl,g< td=""><td></td><td>45.5 ug/Kg</td><td></td><td>-MDL,G</td><td>20</td><td>39.9 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>		32.1 ug/Kg		<mdl,g< td=""><td>16</td><td>32.4 ug/Kg</td><td>,,,</td><td><mdl,g< td=""><td></td><td>45.5 ug/Kg</td><td></td><td>-MDL,G</td><td>20</td><td>39.9 ug/Kg</td></mdl,g<></td></mdl,g<>	16	32.4 ug/Kg	,,,	<mdl,g< td=""><td></td><td>45.5 ug/Kg</td><td></td><td>-MDL,G</td><td>20</td><td>39.9 ug/Kg</td></mdl,g<>		45.5 ug/Kg		-MDL,G	20	39.9 ug/Kg
2,4,6-Trchloropheno		<mdl,g< td=""><td></td><td>34.8 ug/Kg</td><td></td><td><mdl,g< td=""><td>18</td><td>35.1 ug/Kg</td><td></td><td><mdl,g< td=""><td>52</td><td>49.3 ug/Kg</td><td></td><td>«MDL,G</td><td>22 4</td><td>43.3 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>		34.8 ug/Kg		<mdl,g< td=""><td>18</td><td>35.1 ug/Kg</td><td></td><td><mdl,g< td=""><td>52</td><td>49.3 ug/Kg</td><td></td><td>«MDL,G</td><td>22 4</td><td>43.3 ug/Kg</td></mdl,g<></td></mdl,g<>	18	35.1 ug/Kg		<mdl,g< td=""><td>52</td><td>49.3 ug/Kg</td><td></td><td>«MDL,G</td><td>22 4</td><td>43.3 ug/Kg</td></mdl,g<>	52	49.3 ug/Kg		«MDL,G	22 4	43.3 ug/Kg
2,4-Dictiorophenol		<mdl,g< td=""><td>21</td><td></td><td></td><td><mdl,g< td=""><td>22</td><td>43.2 ug/Kg</td><td>(P</td><td><mdl,g< td=""><td>င္တ</td><td>60.7 ug/Kg</td><td></td><td>4MDL,G</td><td>27 5</td><td>53.2 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	21			<mdl,g< td=""><td>22</td><td>43.2 ug/Kg</td><td>(P</td><td><mdl,g< td=""><td>င္တ</td><td>60.7 ug/Kg</td><td></td><td>4MDL,G</td><td>27 5</td><td>53.2 ug/Kg</td></mdl,g<></td></mdl,g<>	22	43.2 ug/Kg	(P	<mdl,g< td=""><td>င္တ</td><td>60.7 ug/Kg</td><td></td><td>4MDL,G</td><td>27 5</td><td>53.2 ug/Kg</td></mdl,g<>	င္တ	60.7 ug/Kg		4MDL,G	27 5	53.2 ug/Kg
2,4-Dimethylphenol		<mdl,g< td=""><td>9.4</td><td>18.7 ug/Kg</td><td></td><td><mdl,g< td=""><td>9.4</td><td>18.9 ug/Kg</td><td></td><td><mdl,g< td=""><td>13</td><td>26.6 ug/Kg</td><td></td><td>4MDL,G</td><td>12 2</td><td>23.3 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	9.4	18.7 ug/Kg		<mdl,g< td=""><td>9.4</td><td>18.9 ug/Kg</td><td></td><td><mdl,g< td=""><td>13</td><td>26.6 ug/Kg</td><td></td><td>4MDL,G</td><td>12 2</td><td>23.3 ug/Kg</td></mdl,g<></td></mdl,g<>	9.4	18.9 ug/Kg		<mdl,g< td=""><td>13</td><td>26.6 ug/Kg</td><td></td><td>4MDL,G</td><td>12 2</td><td>23.3 ug/Kg</td></mdl,g<>	13	26.6 ug/Kg		4MDL,G	12 2	23.3 ug/Kg
2,4-Dinitrotoluene		ΨDΓ	4	8.03 ug/Kg		<mdl,g< td=""><td>4</td><td></td><td></td><td><mdl,g< td=""><td>5.7</td><td>11.4 ug/Kg</td><td></td><td>4MDL,G</td><td>5</td><td>9.98 Jg/Kg</td></mdl,g<></td></mdl,g<>	4			<mdl,g< td=""><td>5.7</td><td>11.4 ug/Kg</td><td></td><td>4MDL,G</td><td>5</td><td>9.98 Jg/Kg</td></mdl,g<>	5.7	11.4 ug/Kg		4MDL,G	5	9.98 Jg/Kg
2,6-Dinirotoluene		ÅDL	13	26.8 ug/Kg		<mdl,g< td=""><td>13</td><td></td><td></td><td><mdl,g< td=""><td> </td><td>38 ug/Kg</td><td></td><td>4MDL,G</td><td>17 3</td><td>33.3 Jg/Kg</td></mdl,g<></td></mdl,g<>	13			<mdl,g< td=""><td> </td><td>38 ug/Kg</td><td></td><td>4MDL,G</td><td>17 3</td><td>33.3 Jg/Kg</td></mdl,g<>		38 ug/Kg		4MDL,G	17 3	33.3 Jg/Kg
2-Chloronaphthalene		₩DF	21	42.8 ug/Kg		<mdl,g< td=""><td>22</td><td>43.2 ug/Kg</td><td></td><td><mdl,g< td=""><td>ଛ</td><td>60.7 ug/Kg</td><td></td><td>4MDL,G</td><td>27 5</td><td>53.2 Jg/Kg</td></mdl,g<></td></mdl,g<>	22	43.2 ug/Kg		<mdl,g< td=""><td>ଛ</td><td>60.7 ug/Kg</td><td></td><td>4MDL,G</td><td>27 5</td><td>53.2 Jg/Kg</td></mdl,g<>	ଛ	60.7 ug/Kg		4MDL,G	27 5	53.2 Jg/Kg

			,				•		•				
PROJECT: 423056-160	Locator:	NFK503		Locator:	NFK503		Locator			Locator:	NFK504		
Norfolk CSO Sediment Remediation	Descrip:	Boeing Sto	Boeing Storm Drain Channel	Descrip	Boeing Storm	Boeing Storm Drain Channel	Descrip:		Upriver Reference	Descrip:	Upriver Reference	rence	
Five-Year Monitoring Program	Sampled:	Apr 24, 2001	2	Sampled:	Apr 24, 2001 1,20703-3		Sampled Lab ID:	led: Apr 24, 2001): L20703-7		Sampled: Lab ID:	Apr 24, 2001 L20703-8		
	Matrix	SALTWTRSED	SED	Matrix:	SALTWTRSED	۵	Matrix:		RSED	Matrix:	SALTWTRSED	Ü	
	% Solids:	7.4.7		% Solids:	74.1		% Solids:			% Solids:	60.1		
Parameters	Value	Qual	MDL RDL Units	Value	Quel	MDL RDL U	Units Value	Qual	MDL RDL Units	its Value	Qual	MDL R	RDL Units
COMBINED LABS		- 0	- Lry weign basis		Ś.	Wergin basis		•	ory weight basis	· · · · · · · · · · · · · · · · · · ·		vergiii bask	•
2-Chlorophenol		<mdl,g< td=""><td>11 21.4 ug/Kg</td><td></td><td><mdi,g< td=""><td>11 21.6 ug</td><td>ng/Kg</td><td><mdl,g< td=""><td>3 15 30.4 ug/Kg</td><td>- \$</td><td><mdl,g< td=""><td>13</td><td>26.3 ug/K</td></mdl,g<></td></mdl,g<></td></mdi,g<></td></mdl,g<>	11 21.4 ug/Kg		<mdi,g< td=""><td>11 21.6 ug</td><td>ng/Kg</td><td><mdl,g< td=""><td>3 15 30.4 ug/Kg</td><td>- \$</td><td><mdl,g< td=""><td>13</td><td>26.3 ug/K</td></mdl,g<></td></mdl,g<></td></mdi,g<>	11 21.6 ug	ng/Kg	<mdl,g< td=""><td>3 15 30.4 ug/Kg</td><td>- \$</td><td><mdl,g< td=""><td>13</td><td>26.3 ug/K</td></mdl,g<></td></mdl,g<>	3 15 30.4 ug/Kg	- \$	<mdl,g< td=""><td>13</td><td>26.3 ug/K</td></mdl,g<>	13	26.3 ug/K
2-Meth/Inaphthalene		₩DΓ	19 37.5 ug/Kg	0	<mdi,g< td=""><td>19 37.8 ug</td><td>ng/Kg</td><td><mdl,g< td=""><td></td><td>6y</td><td><mdl,g< td=""><td>23 4</td><td>46.3 ug/K</td></mdl,g<></td></mdl,g<></td></mdi,g<>	19 37.8 ug	ng/Kg	<mdl,g< td=""><td></td><td>6y</td><td><mdl,g< td=""><td>23 4</td><td>46.3 ug/K</td></mdl,g<></td></mdl,g<>		6y	<mdl,g< td=""><td>23 4</td><td>46.3 ug/K</td></mdl,g<>	23 4	46.3 ug/K
2-Meth/lphenol		<mdl,g< td=""><td>25 50.9 ug/Kg</td><td>6</td><td><mdi,g< td=""><td>51.3</td><td>ng/Kg</td><td><mdl,g< td=""><td>3 36 72.1 ug/Kg</td><td>D)</td><td><mdl,g< td=""><td>32</td><td>63.2 ug/K</td></mdl,g<></td></mdl,g<></td></mdi,g<></td></mdl,g<>	25 50.9 ug/Kg	6	<mdi,g< td=""><td>51.3</td><td>ng/Kg</td><td><mdl,g< td=""><td>3 36 72.1 ug/Kg</td><td>D)</td><td><mdl,g< td=""><td>32</td><td>63.2 ug/K</td></mdl,g<></td></mdl,g<></td></mdi,g<>	51.3	ng/Kg	<mdl,g< td=""><td>3 36 72.1 ug/Kg</td><td>D)</td><td><mdl,g< td=""><td>32</td><td>63.2 ug/K</td></mdl,g<></td></mdl,g<>	3 36 72.1 ug/Kg	D)	<mdl,g< td=""><td>32</td><td>63.2 ug/K</td></mdl,g<>	32	63.2 ug/K
2-Nitrophenol		<mdl,g< td=""><td>20 40.2 ug/Kg</td><td>9</td><td><mdl,g< td=""><td>40.5</td><td>ng/Kg</td><td><mdl,g< td=""><td>3 28 56.9 ug/Kg</td><td>ξĝ</td><td><mdl,g< td=""><td></td><td>49.3 ug/Kç</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	20 40.2 ug/Kg	9	<mdl,g< td=""><td>40.5</td><td>ng/Kg</td><td><mdl,g< td=""><td>3 28 56.9 ug/Kg</td><td>ξĝ</td><td><mdl,g< td=""><td></td><td>49.3 ug/Kç</td></mdl,g<></td></mdl,g<></td></mdl,g<>	40.5	ng/Kg	<mdl,g< td=""><td>3 28 56.9 ug/Kg</td><td>ξĝ</td><td><mdl,g< td=""><td></td><td>49.3 ug/Kç</td></mdl,g<></td></mdl,g<>	3 28 56.9 ug/Kg	ξĝ	<mdl,g< td=""><td></td><td>49.3 ug/Kç</td></mdl,g<>		49.3 ug/Kç
4-Brorrophenyl Phenyl Ether		₩DF	24.1	6	<mdi,g< td=""><td>24.3</td><td>ug/Kg</td><td><mdl,g< td=""><td>17 34.2</td><td>Q)</td><td><mdl,g< td=""><td>. </td><td>3) ug/Kc</td></mdl,g<></td></mdl,g<></td></mdi,g<>	24.3	ug/Kg	<mdl,g< td=""><td>17 34.2</td><td>Q)</td><td><mdl,g< td=""><td>. </td><td>3) ug/Kc</td></mdl,g<></td></mdl,g<>	17 34.2	Q)	<mdl,g< td=""><td>. </td><td>3) ug/Kc</td></mdl,g<>	.	3) ug/Kc
4-Chlorophenyl Phenyl Ether		-WDL	34.8 8.8	D	<mdi,g< td=""><td>35.1</td><td>ug/Kg</td><td><mdl,g< td=""><td>25 49.3</td><td>g></td><td><mdl,g< td=""><td>- 1</td><td>43.3 ug/Kç</td></mdl,g<></td></mdl,g<></td></mdi,g<>	35.1	ug/Kg	<mdl,g< td=""><td>25 49.3</td><td>g></td><td><mdl,g< td=""><td>- 1</td><td>43.3 ug/Kç</td></mdl,g<></td></mdl,g<>	25 49.3	g>	<mdl,g< td=""><td>- 1</td><td>43.3 ug/Kç</td></mdl,g<>	- 1	43.3 ug/Kç
4-Methylphenol		<mdl,g< td=""><td>42.8</td><td>9</td><td><mdi,g< td=""><td>22 43.2 ug</td><td>ng/Kg</td><td><mdl,g< td=""><td>30 60.7</td><td>çg</td><td>-MDL,G</td><td>27</td><td>53.2 ug/K</td></mdl,g<></td></mdi,g<></td></mdl,g<>	42.8	9	<mdi,g< td=""><td>22 43.2 ug</td><td>ng/Kg</td><td><mdl,g< td=""><td>30 60.7</td><td>çg</td><td>-MDL,G</td><td>27</td><td>53.2 ug/K</td></mdl,g<></td></mdi,g<>	22 43.2 ug	ng/Kg	<mdl,g< td=""><td>30 60.7</td><td>çg</td><td>-MDL,G</td><td>27</td><td>53.2 ug/K</td></mdl,g<>	30 60.7	çg	-MDL,G	27	53.2 ug/K
Acenaphthene		<mdl< td=""><td></td><td>C</td><td><mdi,g< td=""><td>9.4 18.9 ug</td><td>ug/Kg</td><td><mdl,g< td=""><td>13 26.6</td><td>ζĝ</td><td><mdl,g< td=""><td>1</td><td>23.3 ug/Kç</td></mdl,g<></td></mdl,g<></td></mdi,g<></td></mdl<>		C	<mdi,g< td=""><td>9.4 18.9 ug</td><td>ug/Kg</td><td><mdl,g< td=""><td>13 26.6</td><td>ζĝ</td><td><mdl,g< td=""><td>1</td><td>23.3 ug/Kç</td></mdl,g<></td></mdl,g<></td></mdi,g<>	9.4 18.9 ug	ug/Kg	<mdl,g< td=""><td>13 26.6</td><td>ζĝ</td><td><mdl,g< td=""><td>1</td><td>23.3 ug/Kç</td></mdl,g<></td></mdl,g<>	13 26.6	ζĝ	<mdl,g< td=""><td>1</td><td>23.3 ug/Kç</td></mdl,g<>	1	23.3 ug/Kç
Acenaphthylene		ΨDΓ		ð	<mdi,g< td=""><td>20 40.5 ug</td><td>ug/Kg</td><td><mdl,g< td=""><td>28</td><td>9</td><td><mdl,g< td=""><td></td><td>49.3 ug/K</td></mdl,g<></td></mdl,g<></td></mdi,g<>	20 40.5 ug	ug/Kg	<mdl,g< td=""><td>28</td><td>9</td><td><mdl,g< td=""><td></td><td>49.3 ug/K</td></mdl,g<></td></mdl,g<>	28	9	<mdl,g< td=""><td></td><td>49.3 ug/K</td></mdl,g<>		49.3 ug/K
Aniline		<mdl,x< td=""><td></td><td>9</td><td><mdl,3,x< td=""><td>51.3</td><td>ug/Kg</td><td><mdl,gx< td=""><td>36 72.1</td><td>2</td><td><mdl,g,x< td=""><td>32 6</td><td>63.2 ug/Kç</td></mdl,g,x<></td></mdl,gx<></td></mdl,3,x<></td></mdl,x<>		9	<mdl,3,x< td=""><td>51.3</td><td>ug/Kg</td><td><mdl,gx< td=""><td>36 72.1</td><td>2</td><td><mdl,g,x< td=""><td>32 6</td><td>63.2 ug/Kç</td></mdl,g,x<></td></mdl,gx<></td></mdl,3,x<>	51.3	ug/Kg	<mdl,gx< td=""><td>36 72.1</td><td>2</td><td><mdl,g,x< td=""><td>32 6</td><td>63.2 ug/Kç</td></mdl,g,x<></td></mdl,gx<>	36 72.1	2	<mdl,g,x< td=""><td>32 6</td><td>63.2 ug/Kç</td></mdl,g,x<>	32 6	63.2 ug/Kç
Anthracene		₹₩DΓ	10.7	9	<mdl,g< th=""><th>10.8</th><th>ug/Kg</th><th><mdl,g< th=""><th>9.7</th><th>9</th><th><mdl,g< th=""><th>6.7</th><th>13.3 ug/K</th></mdl,g<></th></mdl,g<></th></mdl,g<>	10.8	ug/Kg	<mdl,g< th=""><th>9.7</th><th>9</th><th><mdl,g< th=""><th>6.7</th><th>13.3 ug/K</th></mdl,g<></th></mdl,g<>	9.7	9	<mdl,g< th=""><th>6.7</th><th>13.3 ug/K</th></mdl,g<>	6.7	13.3 ug/K
Benzola)anthracene	8.14			3			ug/Kg	24.9 G	3.8 7.59		18 G	3.3	6.63 ug/K
Benzola)pyrene	-	<mdl,e< td=""><td></td><td>0</td><td><mdl,3,e< td=""><td>4 8.1 ug</td><td>ug/Kg</td><td>₹</td><td>5.7 11.4</td><td>\$</td><td><mdl,g,e< td=""><td>2</td><td>9.93 ug/K</td></mdl,g,e<></td></mdl,3,e<></td></mdl,e<>		0	<mdl,3,e< td=""><td>4 8.1 ug</td><td>ug/Kg</td><td>₹</td><td>5.7 11.4</td><td>\$</td><td><mdl,g,e< td=""><td>2</td><td>9.93 ug/K</td></mdl,g,e<></td></mdl,3,e<>	4 8.1 ug	ug/Kg	₹	5.7 11.4	\$	<mdl,g,e< td=""><td>2</td><td>9.93 ug/K</td></mdl,g,e<>	2	9.93 ug/K
Benzolb)fluoranthene	10.6	1 1	4 8.03 ug/Kg	6	<mdl,3,e< td=""><td>4 8.1 ug/Kg</td><td>Υg</td><td>21.1 G,E</td><td>5.7 11.4</td><td></td><td>16 G,E</td><td>5</td><td>9.93 ug/K</td></mdl,3,e<>	4 8.1 ug/Kg	Υg	21.1 G,E	5.7 11.4		16 G,E	5	9.93 ug/K
Benzoig,h,i)perylere		<mdl,g< th=""><th></th><th>6</th><th><mdi,g< th=""><th>11 21.6 ug</th><th>ug/Kg</th><th>₹</th><th>15</th><th></th><th>- 1</th><th></th><th>26.3 ug/K(</th></mdi,g<></th></mdl,g<>		6	<mdi,g< th=""><th>11 21.6 ug</th><th>ug/Kg</th><th>₹</th><th>15</th><th></th><th>- 1</th><th></th><th>26.3 ug/K(</th></mdi,g<>	11 21.6 ug	ug/Kg	₹	15		- 1		26.3 ug/K(
Benzolk)fluoranthene	5.8	3 «RDL	4 8.03 ug/Kg	0	<mdi,g< td=""><td>4 8.1 ug</td><td>ug/Kg</td><td></td><td></td><td>(g 8.5</td><td>5 <rdl,g< td=""><td>5</td><td>9.93 ug/K</td></rdl,g<></td></mdi,g<>	4 8.1 ug	ug/Kg			(g 8.5	5 <rdl,g< td=""><td>5</td><td>9.93 ug/K</td></rdl,g<>	5	9.93 ug/K
Benzoic Acid	80.9	1	1	9.79 67.6		16.2	ug/Kg	268 G	=	(g)		10	2) ug/K
Benzyl Alcohol		<mdl< td=""><td></td><td>0</td><td><mdi,g< td=""><td>16.2</td><td>ug/Kg</td><td>₹</td><td>11 22.8</td><td></td><td><mdl,g< td=""><td>10</td><td>2) ug/K</td></mdl,g<></td></mdi,g<></td></mdl<>		0	<mdi,g< td=""><td>16.2</td><td>ug/Kg</td><td>₹</td><td>11 22.8</td><td></td><td><mdl,g< td=""><td>10</td><td>2) ug/K</td></mdl,g<></td></mdi,g<>	16.2	ug/Kg	₹	11 22.8		<mdl,g< td=""><td>10</td><td>2) ug/K</td></mdl,g<>	10	2) ug/K
Benzyl Butyl Phthaate		<mdl< td=""><td>16.1</td><td>g</td><td><mdi,g< td=""><td>16.2</td><td>ug/Kg</td><td>34.9 G</td><td>=</td><td></td><td>28 G</td><td></td><td>20 ug/K</td></mdi,g<></td></mdl<>	16.1	g	<mdi,g< td=""><td>16.2</td><td>ug/Kg</td><td>34.9 G</td><td>=</td><td></td><td>28 G</td><td></td><td>20 ug/K</td></mdi,g<>	16.2	ug/Kg	34.9 G	=		28 G		20 ug/K
Bis(2-Chloroethoxy)Methane		₩DF		6	<mdi,g< td=""><td>23 45.9 ug/Kg</td><td>/Kg</td><td><mdl,6< td=""><td>32</td><td>6></td><td><mdl,g< td=""><td></td><td>56.6 ug/K</td></mdl,g<></td></mdl,6<></td></mdi,g<>	23 45.9 ug/Kg	/Kg	<mdl,6< td=""><td>32</td><td>6></td><td><mdl,g< td=""><td></td><td>56.6 ug/K</td></mdl,g<></td></mdl,6<>	32	6>	<mdl,g< td=""><td></td><td>56.6 ug/K</td></mdl,g<>		56.6 ug/K
Bis(2-Chloroethyl)Ether		<mdl,g< td=""><td></td><td>g</td><td><mdi,g< td=""><td></td><td>ſΚg</td><td><mdl,g< td=""><td>28</td><td>(g</td><td><mdl,g< td=""><td></td><td>49.9 ug/K</td></mdl,g<></td></mdl,g<></td></mdi,g<></td></mdl,g<>		g	<mdi,g< td=""><td></td><td>ſΚg</td><td><mdl,g< td=""><td>28</td><td>(g</td><td><mdl,g< td=""><td></td><td>49.9 ug/K</td></mdl,g<></td></mdl,g<></td></mdi,g<>		ſΚg	<mdl,g< td=""><td>28</td><td>(g</td><td><mdl,g< td=""><td></td><td>49.9 ug/K</td></mdl,g<></td></mdl,g<>	28	(g	<mdl,g< td=""><td></td><td>49.9 ug/K</td></mdl,g<>		49.9 ug/K
Bis(2-Chloroisopropyl)Ether		ΨDΓ	20 40.2 ug/Kg	g	<mdl,g< td=""><td>20 40.5 ug/Kg</td><td>ſΚg</td><td> </td><td>28 56.9</td><td>6)</td><td><mdl,g< td=""><td>25. 4</td><td>49.9 ug/K</td></mdl,g<></td></mdl,g<>	20 40.5 ug/Kg	ſΚg		28 56.9	6)	<mdl,g< td=""><td>25. 4</td><td>49.9 ug/K</td></mdl,g<>	25. 4	49.9 ug/K
Bis(2-Ethylhexyl)Phthalate	51	1 1		g 42.4		18.9	ug/Kg	389 G,B,L	13	331	- 1		23.3 ug/K
Caffeine		<mdl,l< td=""><td></td><td>8</td><td><mdl,g,l< td=""><td>16.2</td><td>ng/Kg</td><td><mdl,gl< td=""><td>11 22.8</td><td>9</td><td><mdl,g,l< td=""><td></td><td>20 ug/Kg</td></mdl,g,l<></td></mdl,gl<></td></mdl,g,l<></td></mdl,l<>		8	<mdl,g,l< td=""><td>16.2</td><td>ng/Kg</td><td><mdl,gl< td=""><td>11 22.8</td><td>9</td><td><mdl,g,l< td=""><td></td><td>20 ug/Kg</td></mdl,g,l<></td></mdl,gl<></td></mdl,g,l<>	16.2	ng/Kg	<mdl,gl< td=""><td>11 22.8</td><td>9</td><td><mdl,g,l< td=""><td></td><td>20 ug/Kg</td></mdl,g,l<></td></mdl,gl<>	11 22.8	9	<mdl,g,l< td=""><td></td><td>20 ug/Kg</td></mdl,g,l<>		20 ug/Kg
Carbazole		≺MDĽ	18.7	8	<mdi,g< td=""><td>18.9</td><td>ng/Kg</td><td>⊽</td><td>13 26.6</td><td></td><td></td><td>12 2</td><td>23.3 ug/K</td></mdi,g<>	18.9	ng/Kg	⊽	13 26.6			12 2	23.3 ug/K
Chrysene	6.7	9 <rdl,e< td=""><td>10.7</td><td>6</td><td><mdl,g,e< td=""><td>10.8</td><td>ug/Kg</td><td>17.2 G,E</td><td>7.6 15.2</td><td>(g 8.2</td><td>v </td><td></td><td>13.3 ug/Kę</td></mdl,g,e<></td></rdl,e<>	10.7	6	<mdl,g,e< td=""><td>10.8</td><td>ug/Kg</td><td>17.2 G,E</td><td>7.6 15.2</td><td>(g 8.2</td><td>v </td><td></td><td>13.3 ug/Kę</td></mdl,g,e<>	10.8	ug/Kg	17.2 G,E	7.6 15.2	(g 8.2	v		13.3 ug/Kę
Coprostanol		≺MDF	37.5	6	<mdi,g< td=""><td>37.8</td><td>ug/Kg</td><td><mdl,g< td=""><td>27 53.1</td><td>5</td><td><mdl,g< td=""><td></td><td>46.6 ug/Kç</td></mdl,g<></td></mdl,g<></td></mdi,g<>	37.8	ug/Kg	<mdl,g< td=""><td>27 53.1</td><td>5</td><td><mdl,g< td=""><td></td><td>46.6 ug/Kç</td></mdl,g<></td></mdl,g<>	27 53.1	5	<mdl,g< td=""><td></td><td>46.6 ug/Kç</td></mdl,g<>		46.6 ug/Kç
Dibenzo(a,h)anthracene		√WDF	18.7	0	<mdi,g< td=""><td>18.9</td><td>ng/Kg</td><td><mdl,g< td=""><td>13 26.6</td><td>9</td><td><mdl,g< td=""><td>ı</td><td>23.3 ug/Kc</td></mdl,g<></td></mdl,g<></td></mdi,g<>	18.9	ng/Kg	<mdl,g< td=""><td>13 26.6</td><td>9</td><td><mdl,g< td=""><td>ı</td><td>23.3 ug/Kc</td></mdl,g<></td></mdl,g<>	13 26.6	9	<mdl,g< td=""><td>ı</td><td>23.3 ug/Kc</td></mdl,g<>	ı	23.3 ug/Kc
Dibenzofuran		¢ΜDΓ		6	<mdl,g< td=""><td>37.8</td><td>ug/Kg</td><td><mdl,g< td=""><td>27 53.1</td><td>6)</td><td><mdl,g< td=""><td></td><td>46.6 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	37.8	ug/Kg	<mdl,g< td=""><td>27 53.1</td><td>6)</td><td><mdl,g< td=""><td></td><td>46.6 ug/Kg</td></mdl,g<></td></mdl,g<>	27 53.1	6)	<mdl,g< td=""><td></td><td>46.6 ug/Kg</td></mdl,g<>		46.6 ug/Kg
Diethy Phthalate		<₩DF		6	<mdi,g< td=""><td>16.2</td><td>ug/Kg</td><td><mdl,g< td=""><td>11 22.8</td><td>(a</td><td><mdl,g< td=""><td></td><td>20 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdi,g<>	16.2	ug/Kg	<mdl,g< td=""><td>11 22.8</td><td>(a</td><td><mdl,g< td=""><td></td><td>20 ug/Kg</td></mdl,g<></td></mdl,g<>	11 22.8	(a	<mdl,g< td=""><td></td><td>20 ug/Kg</td></mdl,g<>		20 ug/Kg
Dimethyl Phthalate		<mdi.< td=""><td></td><td></td><td>⊽│</td><td>29.7</td><td>ug/Kg</td><td>⊽</td><td>21 41.7</td><td></td><td>٧ </td><td>18</td><td>36.6 ug/Kg</td></mdi.<>			⊽│	29.7	ug/Kg	⊽	21 41.7		٧	18	36.6 ug/Kg
Di-N-Eutyl Phthala:e	31.6	9 B		33.9			ug/Kg	56.2 G,B	9.5 19	39.3	3 G,B		16.6 ug/Kg
Di-N-Octyl Phthalae		<mdl< td=""><td></td><td>6</td><td><mdi,g< td=""><td>21.6</td><td>ug/Kg</td><td>١,</td><td>12</td><td></td><td><mdl,g< td=""><td>13 2</td><td>26.6 ug/Kg</td></mdl,g<></td></mdi,g<></td></mdl<>		6	<mdi,g< td=""><td>21.6</td><td>ug/Kg</td><td>١,</td><td>12</td><td></td><td><mdl,g< td=""><td>13 2</td><td>26.6 ug/Kg</td></mdl,g<></td></mdi,g<>	21.6	ug/Kg	١,	12		<mdl,g< td=""><td>13 2</td><td>26.6 ug/Kg</td></mdl,g<>	13 2	26.6 ug/Kg
Fluoranthene	24.5	5 L,E	11 21.4 ug/Kg	g	<mdl,g,l,e< td=""><td>11 21.6 ug</td><td>ug/Kg</td><td>50.3 G,L,E</td><td>15</td><td>(g 27.5</td><td></td><td>13 2</td><td>26.6 ug/Kg</td></mdl,g,l,e<>	11 21.6 ug	ug/Kg	50.3 G,L,E	15	(g 27.5		13 2	26.6 ug/Kg
Fluorene		<mdl< td=""><td></td><td>g</td><td><mdi,g< td=""><td>18 35.1 ug</td><td>ug/Kg</td><td><mdl,g< td=""><td>52</td><td>5</td><td><mdl,g< td=""><td>22 4</td><td>43.3 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdi,g<></td></mdl<>		g	<mdi,g< td=""><td>18 35.1 ug</td><td>ug/Kg</td><td><mdl,g< td=""><td>52</td><td>5</td><td><mdl,g< td=""><td>22 4</td><td>43.3 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdi,g<>	18 35.1 ug	ug/Kg	<mdl,g< td=""><td>52</td><td>5</td><td><mdl,g< td=""><td>22 4</td><td>43.3 ug/Kg</td></mdl,g<></td></mdl,g<>	52	5	<mdl,g< td=""><td>22 4</td><td>43.3 ug/Kg</td></mdl,g<>	22 4	43.3 ug/Kg
Hexachlorobenzere	'	-{WDL	0.88 1.78 ug/Kg	g	<mdi,g< td=""><td>0.89 1.79 ug</td><td>ug/Kg</td><td><mdl,6< td=""><td>1.3</td><td>g)</td><td><mdl,g< td=""><td>1.1 2</td><td>2.21 ug/Kg</td></mdl,g<></td></mdl,6<></td></mdi,g<>	0.89 1.79 ug	ug/Kg	<mdl,6< td=""><td>1.3</td><td>g)</td><td><mdl,g< td=""><td>1.1 2</td><td>2.21 ug/Kg</td></mdl,g<></td></mdl,6<>	1.3	g)	<mdl,g< td=""><td>1.1 2</td><td>2.21 ug/Kg</td></mdl,g<>	1.1 2	2.21 ug/Kg
Hexachlorobutacliene		<mdl,g< td=""><td>2.01</td><td>6</td><td><mdl,g< td=""><td>2.02</td><td>ug/Kg</td><td><mdl,g< td=""><td>1.4 2.85</td><td>D)</td><td><mdl,g< td=""><td>- 1</td><td>2.5 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	2.01	6	<mdl,g< td=""><td>2.02</td><td>ug/Kg</td><td><mdl,g< td=""><td>1.4 2.85</td><td>D)</td><td><mdl,g< td=""><td>- 1</td><td>2.5 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	2.02	ug/Kg	<mdl,g< td=""><td>1.4 2.85</td><td>D)</td><td><mdl,g< td=""><td>- 1</td><td>2.5 ug/Kg</td></mdl,g<></td></mdl,g<>	1.4 2.85	D)	<mdl,g< td=""><td>- 1</td><td>2.5 ug/Kg</td></mdl,g<>	- 1	2.5 ug/Kg
Hexachloroethane		oMDL,G	20 40.2 ug/Kg	9	<mdl,g< td=""><td>20 40.5 ug</td><td>ug/Kg </td><td><mdl,g< td=""><td>28 56.9 ug/Kg</td><td>5</td><td><mdl,g< td=""><td>25 4</td><td>49.5 ug/Kg</td></mdl,g<></td></mdl,g<></td></mdl,g<>	20 40.5 ug	ug/Kg	<mdl,g< td=""><td>28 56.9 ug/Kg</td><td>5</td><td><mdl,g< td=""><td>25 4</td><td>49.5 ug/Kg</td></mdl,g<></td></mdl,g<>	28 56.9 ug/Kg	5	<mdl,g< td=""><td>25 4</td><td>49.5 ug/Kg</td></mdl,g<>	25 4	49.5 ug/Kg

)		•						•	-								
PROJECT: 423056-160 Norfolk CSD Sediment Remediation Five-Year Monitoring Program Year Two - April 2001 Sampling Event	Locator. Descrip: Sampled: Lab ID: Matrix: % Solids:	NFK503 Boeing Storm Drair Channel Apr 24, 2001 L20703-5 SALTWTRSED 74.7	orm Dra 01 SED	ir Char		Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	NFK503 Boeing Stom Drain Channel Apr 24, 200: L20703-6 SALTWTRSED 74.1	Drain C D	hannel		Locator: Descrip: Sampled: Lab ID: Matrix: % Solids:	NFK504 Upriver Reference Apr 24, 2001 L20703-7 SALTWTRSED 52.7	ence D		<u> </u>	Locator: Descrip: Sampled: Lab ID: Marrix: % Solids: 6	NFK504 Uprver Reference Apr 24, 2001 L20703-8 SALTWTRSED 60.1	D auce		
Parameters	Value	Qual MDL PDL - Dry Weight Basis	al MDL P.C - Dry Weight Bass	707 88	Units	Value	Qual - ^{[7} 7	MDL RDL - Cry Weight Basis	RDL sis	Units	Value	Qual MDL RDL - Dry Weight Basis	MDL RD - Dry Weight Basis		Units	Value	Qual N	MDL RDL - Dry Weight Basis	پ	Units
COMBINED LABS																	•	,		
Indeno(1,2,3-Cd)Pyrene		<mdl< td=""><td>12</td><td>12 24.1</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>12</td><td>12 24.3 ug/Kg</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>17</td><td>17 34.2 ug/Kg</td><td>g//gr</td><td></td><td><ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>Ϋ́ς</td></ndl,g<></td></mdl,g<></td></mdl,g<></td></mdl<>	12	12 24.1	ug/Kg		<mdl,g< td=""><td>12</td><td>12 24.3 ug/Kg</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>17</td><td>17 34.2 ug/Kg</td><td>g//gr</td><td></td><td><ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>Ϋ́ς</td></ndl,g<></td></mdl,g<></td></mdl,g<>	12	12 24.3 ug/Kg	ug/Kg		<mdl,g< td=""><td>17</td><td>17 34.2 ug/Kg</td><td>g//gr</td><td></td><td><ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>Ϋ́ς</td></ndl,g<></td></mdl,g<>	17	17 34.2 ug/Kg	g//gr		<ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>Ϋ́ς</td></ndl,g<>	15	30 ug/Kg	Ϋ́ς
Isophorone		<mdl< td=""><td>25</td><td>25 50.9</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>56</td><td>51.3</td><td>51.3 ug/Kg</td><td></td><td><mdl,g< td=""><td>36</td><td>72.1 ug/Kg</td><td>g//gr</td><td></td><td><ndl,g< td=""><td>32</td><td>63.2 ug/Kg</td><td>, X</td></ndl,g<></td></mdl,g<></td></mdl,g<></td></mdl<>	25	25 50.9	ug/Kg		<mdl,g< td=""><td>56</td><td>51.3</td><td>51.3 ug/Kg</td><td></td><td><mdl,g< td=""><td>36</td><td>72.1 ug/Kg</td><td>g//gr</td><td></td><td><ndl,g< td=""><td>32</td><td>63.2 ug/Kg</td><td>, X</td></ndl,g<></td></mdl,g<></td></mdl,g<>	56	51.3	51.3 ug/Kg		<mdl,g< td=""><td>36</td><td>72.1 ug/Kg</td><td>g//gr</td><td></td><td><ndl,g< td=""><td>32</td><td>63.2 ug/Kg</td><td>, X</td></ndl,g<></td></mdl,g<>	36	72.1 ug/Kg	g//gr		<ndl,g< td=""><td>32</td><td>63.2 ug/Kg</td><td>, X</td></ndl,g<>	32	63.2 ug/Kg	, X
Naphthalere		<mdl.g< td=""><td>19</td><td>37.5</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>19</td><td>37.8</td><td>37.8 ug/Kg</td><td></td><td><mdl,g< td=""><td>27</td><td>53.1 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>23 /</td><td>46.6 ug/Kg</td><td>Ϋ́</td></ndl,g<></td></mdl,g<></td></mdl,g<></td></mdl.g<>	19	37.5	ug/Kg		<mdl,g< td=""><td>19</td><td>37.8</td><td>37.8 ug/Kg</td><td></td><td><mdl,g< td=""><td>27</td><td>53.1 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>23 /</td><td>46.6 ug/Kg</td><td>Ϋ́</td></ndl,g<></td></mdl,g<></td></mdl,g<>	19	37.8	37.8 ug/Kg		<mdl,g< td=""><td>27</td><td>53.1 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>23 /</td><td>46.6 ug/Kg</td><td>Ϋ́</td></ndl,g<></td></mdl,g<>	27	53.1 ug/Kg	g/Kg		<ndl,g< td=""><td>23 /</td><td>46.6 ug/Kg</td><td>Ϋ́</td></ndl,g<>	23 /	46.6 ug/Kg	Ϋ́
Nitrobenzene		<mdl< td=""><td>21</td><td>21 42.8</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>22</td><td>43.2</td><td>43.2 ug/Kg</td><td></td><td><mdl,g< td=""><td>8</td><td>60.7 ug/Kg</td><td>g/kg</td><td></td><td><ndl,g< td=""><td>27</td><td>53.2 ug/Kg</td><td>χ^χ</td></ndl,g<></td></mdl,g<></td></mdl,g<></td></mdl<>	21	21 42.8	ug/Kg		<mdl,g< td=""><td>22</td><td>43.2</td><td>43.2 ug/Kg</td><td></td><td><mdl,g< td=""><td>8</td><td>60.7 ug/Kg</td><td>g/kg</td><td></td><td><ndl,g< td=""><td>27</td><td>53.2 ug/Kg</td><td>χ^χ</td></ndl,g<></td></mdl,g<></td></mdl,g<>	22	43.2	43.2 ug/Kg		<mdl,g< td=""><td>8</td><td>60.7 ug/Kg</td><td>g/kg</td><td></td><td><ndl,g< td=""><td>27</td><td>53.2 ug/Kg</td><td>χ^χ</td></ndl,g<></td></mdl,g<>	8	60.7 ug/Kg	g/kg		<ndl,g< td=""><td>27</td><td>53.2 ug/Kg</td><td>χ^χ</td></ndl,g<>	27	53.2 ug/Kg	χ ^χ
N-Nitrosodimethylamine		<mdl,g< td=""><td></td><td>27 53.5</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>27</td><td>54</td><td>54 ug/Kg</td><td></td><td><mdl,g< td=""><td>88</td><td>75.9 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>33</td><td>66.6 ug/Kg</td><td>Ş</td></ndl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>		27 53.5	ug/Kg		<mdl,g< td=""><td>27</td><td>54</td><td>54 ug/Kg</td><td></td><td><mdl,g< td=""><td>88</td><td>75.9 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>33</td><td>66.6 ug/Kg</td><td>Ş</td></ndl,g<></td></mdl,g<></td></mdl,g<>	27	54	54 ug/Kg		<mdl,g< td=""><td>88</td><td>75.9 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>33</td><td>66.6 ug/Kg</td><td>Ş</td></ndl,g<></td></mdl,g<>	88	75.9 ug/Kg	g/Kg		<ndl,g< td=""><td>33</td><td>66.6 ug/Kg</td><td>Ş</td></ndl,g<>	33	66.6 ug/Kg	Ş
N-Nitrosod-N-Propylamine		₩DF	12	24.1	ug/Kg		<mdl,g< td=""><td>12</td><td>24.3</td><td>24.3 ug/Kg</td><td></td><td><mdl,g< td=""><td>11</td><td>34.2 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>λKg</td></ndl,g<></td></mdl,g<></td></mdl,g<>	12	24.3	24.3 ug/Kg		<mdl,g< td=""><td>11</td><td>34.2 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>λKg</td></ndl,g<></td></mdl,g<>	11	34.2 ug/Kg	g/Kg		<ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>λKg</td></ndl,g<>	15	30 ug/Kg	λKg
N-Nitrosodphenylamine		₩DF	22	53.5	ug/Kg		<mdl,g< td=""><td>27</td><td>54</td><td>54 ug/Kg</td><td></td><td><mdl,g< td=""><td>88</td><td>75.9 ug/Kg</td><td>g/kg</td><td></td><td><ndl,g< td=""><td>33 6</td><td>66.6 ug/Kg</td><td>γKg</td></ndl,g<></td></mdl,g<></td></mdl,g<>	27	54	54 ug/Kg		<mdl,g< td=""><td>88</td><td>75.9 ug/Kg</td><td>g/kg</td><td></td><td><ndl,g< td=""><td>33 6</td><td>66.6 ug/Kg</td><td>γKg</td></ndl,g<></td></mdl,g<>	88	75.9 ug/Kg	g/kg		<ndl,g< td=""><td>33 6</td><td>66.6 ug/Kg</td><td>γKg</td></ndl,g<>	33 6	66.6 ug/Kg	γKg
Pentachlorophenol		<mdl,g< td=""><td>6.7</td><td>13.4</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>6.7</td><td>13.5</td><td>13.5 ug/Kg</td><td></td><td><mdl,g< td=""><td>9.5</td><td>19</td><td>19 ug/Kg</td><td></td><td><ndl,g< td=""><td>8.3</td><td>16.6 uy/Kg</td><td>y/Kg</td></ndl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	6.7	13.4	ug/Kg		<mdl,g< td=""><td>6.7</td><td>13.5</td><td>13.5 ug/Kg</td><td></td><td><mdl,g< td=""><td>9.5</td><td>19</td><td>19 ug/Kg</td><td></td><td><ndl,g< td=""><td>8.3</td><td>16.6 uy/Kg</td><td>y/Kg</td></ndl,g<></td></mdl,g<></td></mdl,g<>	6.7	13.5	13.5 ug/Kg		<mdl,g< td=""><td>9.5</td><td>19</td><td>19 ug/Kg</td><td></td><td><ndl,g< td=""><td>8.3</td><td>16.6 uy/Kg</td><td>y/Kg</td></ndl,g<></td></mdl,g<>	9.5	19	19 ug/Kg		<ndl,g< td=""><td>8.3</td><td>16.6 uy/Kg</td><td>y/Kg</td></ndl,g<>	8.3	16.6 uy/Kg	y/Kg
Phenanthrene	8.	8.4 <rdl,e< td=""><td>5.4</td><td>5.4 10.7</td><td>ug/Kg</td><td></td><td><mdl,g,e< td=""><td>5.4</td><td>10.8</td><td>10.8 ug/Kg</td><td>15.6</td><td>G,E</td><td>7.6</td><td>15.2 ug/Kg</td><td>g/Kg</td><td>9</td><td>10 <rdl,g,e< td=""><td>6.7</td><td>13.3 uy/Kg</td><td>2Kg</td></rdl,g,e<></td></mdl,g,e<></td></rdl,e<>	5.4	5.4 10.7	ug/Kg		<mdl,g,e< td=""><td>5.4</td><td>10.8</td><td>10.8 ug/Kg</td><td>15.6</td><td>G,E</td><td>7.6</td><td>15.2 ug/Kg</td><td>g/Kg</td><td>9</td><td>10 <rdl,g,e< td=""><td>6.7</td><td>13.3 uy/Kg</td><td>2Kg</td></rdl,g,e<></td></mdl,g,e<>	5.4	10.8	10.8 ug/Kg	15.6	G,E	7.6	15.2 ug/Kg	g/Kg	9	10 <rdl,g,e< td=""><td>6.7</td><td>13.3 uy/Kg</td><td>2Kg</td></rdl,g,e<>	6.7	13.3 uy/Kg	2Kg
Phenol		<mdl,g< td=""><td>12</td><td>12 24.1</td><td>ug/Kg</td><td></td><td><mdl,g< td=""><td>12</td><td>24.3</td><td>24.3 ug/Kg</td><td></td><td><mdl,g< td=""><td>12</td><td>34.2 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>/Kg</td></ndl,g<></td></mdl,g<></td></mdl,g<></td></mdl,g<>	12	12 24.1	ug/Kg		<mdl,g< td=""><td>12</td><td>24.3</td><td>24.3 ug/Kg</td><td></td><td><mdl,g< td=""><td>12</td><td>34.2 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>/Kg</td></ndl,g<></td></mdl,g<></td></mdl,g<>	12	24.3	24.3 ug/Kg		<mdl,g< td=""><td>12</td><td>34.2 ug/Kg</td><td>g/Kg</td><td></td><td><ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>/Kg</td></ndl,g<></td></mdl,g<>	12	34.2 ug/Kg	g/Kg		<ndl,g< td=""><td>15</td><td>30 ug/Kg</td><td>/Kg</td></ndl,g<>	15	30 ug/Kg	/Kg
Pyrene	5.6	5.9 <rdl,e< td=""><td>5.4</td><td>10.7</td><td>ug/Kg</td><td></td><td><mdl,g,e< td=""><td>5.4</td><td>10.8</td><td>ug/Kg</td><td></td><td><mdl,g,e< td=""><td>7.6</td><td>15.2 ug/Kg</td><td>g/Kg</td><td></td><td><mdl,g,e< td=""><td>6.7</td><td>13.3 ug/Kg</td><td>Ϋ́</td></mdl,g,e<></td></mdl,g,e<></td></mdl,g,e<></td></rdl,e<>	5.4	10.7	ug/Kg		<mdl,g,e< td=""><td>5.4</td><td>10.8</td><td>ug/Kg</td><td></td><td><mdl,g,e< td=""><td>7.6</td><td>15.2 ug/Kg</td><td>g/Kg</td><td></td><td><mdl,g,e< td=""><td>6.7</td><td>13.3 ug/Kg</td><td>Ϋ́</td></mdl,g,e<></td></mdl,g,e<></td></mdl,g,e<>	5.4	10.8	ug/Kg		<mdl,g,e< td=""><td>7.6</td><td>15.2 ug/Kg</td><td>g/Kg</td><td></td><td><mdl,g,e< td=""><td>6.7</td><td>13.3 ug/Kg</td><td>Ϋ́</td></mdl,g,e<></td></mdl,g,e<>	7.6	15.2 ug/Kg	g/Kg		<mdl,g,e< td=""><td>6.7</td><td>13.3 ug/Kg</td><td>Ϋ́</td></mdl,g,e<>	6.7	13.3 ug/Kg	Ϋ́
* Not converted to dry veight basis for this parameter																				